|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届浙江省杭州市萧山区朝晖初级中学中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    2022届浙江省杭州市萧山区朝晖初级中学中考数学对点突破模拟试卷含解析01
    2022届浙江省杭州市萧山区朝晖初级中学中考数学对点突破模拟试卷含解析02
    2022届浙江省杭州市萧山区朝晖初级中学中考数学对点突破模拟试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省杭州市萧山区朝晖初级中学中考数学对点突破模拟试卷含解析

    展开
    这是一份2022届浙江省杭州市萧山区朝晖初级中学中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,有下列四个命题等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列各式计算正确的是( )
    A.(b+2a)(2a﹣b)=b2﹣4a2 B.2a3+a3=3a6
    C.a3•a=a4 D.(﹣a2b)3=a6b3
    2.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
    ①甲步行的速度为60米/分;
    ②乙走完全程用了32分钟;
    ③乙用16分钟追上甲;
    ④乙到达终点时,甲离终点还有300米
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    3.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为(  )

    A.30° B.60° C.50° D.40°
    4.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为(   )
    A.1个 B.2个 C.3个 D.4个
    5.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( )
    A. B. C. D.
    6.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(   )

    A.35° B.45° C.55° D.65°
    7.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )

    A. B.
    C. D.
    8.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )

    A.经过集中喷洒药物,室内空气中的含药量最高达到
    B.室内空气中的含药量不低于的持续时间达到了
    C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
    D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内
    9.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有(  )
    A.1个 B.2个 C.3个 D.4个
    10.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为_________.
    12.已知,则=_______.
    13.在△ABC中,AB=AC,BD⊥AC于D,BE平分∠ABD交AC于E,sinA=,BC=,则 AE=_______.

    14.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.
    15.在正方形中,,点在对角线上运动,连接,过点作,交直线于点(点不与点重合),连接,设,,则和之间的关系是__________(用含的代数式表示).
    16.如图所示,P为∠α的边OA上一点,且P点的坐标为(3,4),则sinα+cosα=_____.

    17.如图,已知点E是菱形ABCD的AD边上的一点,连接BE、CE,M、N分别是BE、CE的中点,连接MN,若∠A=60°,AB=4,则四边形BCNM的面积为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:
    请根据图中信息,解答下列问题:
    (1)求嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数.
    (2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数.
    (3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).

    19.(5分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:
    (1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到   万人次,比2017年春节假日增加   万人次.
    (2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:
    日期
    2月15日
    (除夕)
    2月16日
    (初一)
    2月17日
    (初二)
    2月18日(初三)
    2月19日
    (初四)
    2月20日
    (初五)
    日接待游客数量(万人次)
    7.56
    82.83
    119.51
    84.38
    103.2
    151.55
    这组数据的中位数是   万人次.
    (3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为   ,理由是   .
    (4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.


    20.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.

    21.(10分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
    (1)求证:无论实数m取何值,方程总有两个实数根;
    (2)若方程两个根均为正整数,求负整数m的值.
    22.(10分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.
    (1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.
    ①求证:△ABP∽△BCP;
    ②若 PA=3,PC=4,则 PB= .
    (2)已知锐角△ABC,分别以 AB、AC 为边向外作正△ABE 和正△ACD,CE 和 BD相交于 P 点.如图(2)
    ①求∠CPD 的度数;
    ②求证:P 点为△ABC 的费马点.

    23.(12分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).
    请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量.

    24.(14分)如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.
    (1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);
    (2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    各项计算得到结果,即可作出判断.
    解:A、原式=4a2﹣b2,不符合题意;
    B、原式=3a3,不符合题意;
    C、原式=a4,符合题意;
    D、原式=﹣a6b3,不符合题意,
    故选C.
    2、A
    【解析】
    【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】由图可得,
    甲步行的速度为:240÷4=60米/分,故①正确,
    乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,
    乙追上甲用的时间为:16﹣4=12(分钟),故③错误,
    乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,
    故选A.
    【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.
    3、A
    【解析】
    分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.
    详解:∵AB∥CD,∴∠A+∠C=180°.
    ∵∠A=120°,∴∠C=60°.
    ∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.
    故选A.
    点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.
    4、C
    【解析】
    根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.
    【详解】
    解:在同一平面内,
    ①过两点有且只有一条直线,故①正确;
    ②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;
    ③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;
    ④经过直线外一点有且只有一条直线与已知直线平行,故④正确,
    综上所述,正确的有①③④共3个,
    故选C.
    【点睛】
    本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.
    5、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:74300亿=7.43×1012,
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    6、C
    【解析】
    分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.
    详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,
    ∴∠B=∠ADC=35°,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠CAB=90°-∠B=55°,
    故选C.
    点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.
    7、C
    【解析】
    分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.
    详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.
    B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.
    D、∵sin∠ABE=,
    ∵∠EBD=∠EDB
    ∴BE=DE
    ∴sin∠ABE=.
    由已知不能得到△ABE∽△CBD.故选C.
    点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.
    8、C
    【解析】
    利用图中信息一一判断即可.
    【详解】
    解: A、正确.不符合题意.
    B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;
    C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;
    D、正确.不符合题意,
    故选C.
    【点睛】
    本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.
    9、D
    【解析】
    根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
    【详解】
    解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
    ②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
    ③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
    ④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
    故选:D.
    【点睛】
    本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
    10、B
    【解析】
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】210万=2100000,
    2100000=2.1×106,
    故选B.
    【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    二、填空题(共7小题,每小题3分,满分21分)
    11、4π
    【解析】
    根据扇形的面积公式可得:扇形AOB的面积为,故答案为4π.
    12、3
    【解析】
    依据可设a=3k,b=2k,代入化简即可.
    【详解】
    ∵,
    ∴可设a=3k,b=2k,
    ∴=3
    故答案为3.
    【点睛】
    本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.
    13、5
    【解析】
    ∵BD⊥AC于D,
    ∴∠ADB=90°,
    ∴sinA=.
    设BD=,则AB=AC=,
    在Rt△ABD中,由勾股定理可得:AD=,
    ∴CD=AC-AD=,
    ∵在Rt△BDC中,BD2+CD2=BC2,
    ∴,解得(不合题意,舍去),
    ∴AB=10,AD=8,BD=6,
    ∵BE平分∠ABD,
    ∴,
    ∴AE=5.
    点睛:本题有两个解题关键点:(1)利用sinA=,设BD=,结合其它条件表达出CD,把条件集中到△BDC中,结合BC=由勾股定理解出,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三角形的内角平分线分对边所得线段与这个角的两边对应成比例”.
    14、
    【解析】
    根据随机事件概率大小的求法,找准两点:
    ①符合条件的情况数目;
    ②全部情况的总数.
    二者的比值就是其发生的概率的大小.
    【详解】
    解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,
    ∴从中任意摸出一个球,则摸出白球的概率是.
    故答案为:.
    【点睛】
    本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
    15、或
    【解析】
    当F在边AB上时,如图1作辅助线,先证明≌,得,,根据正切的定义表示即可;
    当F在BA的延长线上时,如图2,同理可得:≌,表示AF的长,同理可得结论.
    【详解】
    解:分两种情况:
    当F在边AB上时,如图1,

    过E作,交AB于G,交DC于H,
    四边形ABCD是正方形,
    ,,,
    ,,


    ≌,



    中,,
    即;
    当F在BA的延长线上时,如图2,

    同理可得:≌,



    中,.
    【点睛】
    本题考查了正方形的性质、三角形全等的性质和判定、三角函数等知识,熟练掌握正方形中辅助线的作法是关键,并注意F在直线AB上,分类讨论.
    16、
    【解析】
    根据正弦和余弦的概念求解.
    【详解】
    解:∵P是∠α的边OA上一点,且P点坐标为(3,4),

    ∴PB=4,OB=3,OP= =5,
    故sinα= = , cosα= ,
    ∴sinα+cosα=,
    故答案为
    【点睛】
    此题考查的是锐角三角函数的定义,解答此类题目的关键是找出所求角的对应边.
    17、3
    【解析】
    如图,连接BD.首先证明△BCD是等边三角形,推出S△EBC=S△DBC=×42=4,再证明△EMN∽△EBC,可得=()2=,推出S△EMN=,由此即可解决问题.
    【详解】
    解:如图,连接BD.

    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,
    ∴△BCD是等边三角形,
    ∴S△EBC=S△DBC=×42=4,
    ∵EM=MB,EN=NC,
    ∴MN∥BC,MN=BC,
    ∴△EMN∽△EBC,
    ∴=()2=,
    ∴S△EMN=,
    ∴S阴=4-=3,
    故答案为3.
    【点睛】
    本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

    三、解答题(共7小题,满分69分)
    18、(115)这组数据的中位数为15.116%;(116)这组数据的平均数是115 11609.116亿元;(15)116016年社会消费品零售总额为115 15167×(115+15.116%)亿元.
    【解析】
    试题分析:(115)根据中位数的定义把这组数据从小到大排列,找出最中间的数即可得出答案;
    (116)根据平均数的定义,求解即可;
    (15)根据增长率的中位数,可得116016年的销售额.
    试题解析:解:(115)数据从小到大排列115.16%,116.5%,15.116%,16.115%,5.7%,
    则嘉兴市1160115~116015年社会消费品零售总额增速这组数据的中位数是15.116%;
    (116)嘉兴市近三年(1160116~116015年)的社会消费品零售总额这组数据的平均数是:
    (6.16+7.6+515.7+9.9+1150.0)÷5=11575.116(亿元);
    (15)从增速中位数分析,嘉兴市116016年社会消费品零售总额为1150×(115+15.116%)=16158.116716(亿元).
    考点:115.折线统计图;116.条形统计图;15.算术平均数;16.中位数..
    19、(1)1365.45、414.4(2)93.79(3)30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%(4)
    【解析】
    (1)由图1可得答案;
    (2)根据中位数的定义求解可得;
    (3)由近3年平均涨幅在30%左右即可做出估计;
    (4)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.
    【详解】
    (1)2018年首次突破了“千万”大关,达到1365.45万人次,比2017年春节假日增加1365.45﹣951.05=414.4万人次.
    故答案为:1365.45、414.4;
    (2)这组数据的中位数是=93.79万人次,
    故答案为:93.79;
    (3)2019年春节假日山西旅游总收入比2018年同期增长的百分率约为30%,理由是:近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%,
    故答案为:30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%.
    (4)画树状图如下:

    则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6,
    所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为.
    【点睛】
    本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.
    20、见解析
    【解析】
    试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.             
    证明:∵AB∥EF,
    ∴∠B=∠F.
    又∵BD=CF,
    ∴BC=FD.
    在△ABC与△EFD中,
    ∴△ABC≌△EFD(AAS),
    ∴AB=EF.
    21、 (1)见解析;(2) m=-1.
    【解析】
    (1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
    (2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
    【详解】
    (1)∵△=(m+3)2﹣4(m+2)
    =(m+1)2
    ∴无论m取何值,(m+1)2恒大于等于1
    ∴原方程总有两个实数根
    (2)原方程可化为:(x-1)(x-m-2)=1
    ∴x1=1, x2=m+2
    ∵方程两个根均为正整数,且m为负整数
    ∴m=-1.
    【点睛】
    本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.
    22、(1)①证明见解析;②;(2)①60°;②证明见解析;
    【解析】
    试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;
    ②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;
    (2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;
    ②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.
    试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
    ∴∠PAB=∠PBC,
    又∵∠APB=∠BPC=120°,
    ∴△ABP∽△BCP,
    ②解:∵△ABP∽△BCP,
    ∴,
    ∴PB2=PA•PC=12,
    ∴PB=2;
    (2)解:①∵△ABE与△ACD都为等边三角形,
    ∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
    ∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
    在△ACE和△ABD中,

    ∴△ACE≌△ABD(SAS),
    ∴∠1=∠2,
    ∵∠3=∠4,
    ∴∠CPD=∠6=∠5=60°;
    ②证明:∵△ADF∽△CFP,
    ∴AF•PF=DF•CF,
    ∵∠AFP=∠CFD,
    ∴△AFP∽△CDF.
    ∴∠APF=∠ACD=60°,
    ∴∠APC=∠CPD+∠APF=120°,
    ∴∠BPC=120°,
    ∴∠APB=360°﹣∠BPC﹣∠APC=120°,
    ∴P点为△ABC的费马点.

    考点:相似形综合题
    23、(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.
    【解析】
    (1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;
    (2)根据条形统计图求出捐4本的人数为,再画出图形即可;
    (3)用360°乘以所捐图书是6本的人数所占比例可得;
    (4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.
    【详解】
    (1)∵捐 2 本的人数是 15 人,占 30%,
    ∴该班学生人数为 15÷30%=50 人;
    (2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;
    补图如下;

    (3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆
    心角为 360°×=36°.
    (4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=,
    ∴全校 2000 名学生共捐 2000×=6280(本),
    答:全校 2000 名学生共捐 6280 册书.
    【点睛】
    本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.
    24、 (1)3.13cm(2)铅笔芯折断部分的长度约是0.98cm
    【解析】
    试题分析:(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;
    (2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.
    试题解析:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;
    (2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.

    考点:解直角三角形的应用;探究型.

    相关试卷

    2023年浙江省杭州市萧山区中考数学模拟冲刺试卷(二)(含解析): 这是一份2023年浙江省杭州市萧山区中考数学模拟冲刺试卷(二)(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省杭州市萧山区河庄初级中学中考数学一模试卷(含解析): 这是一份2023年浙江省杭州市萧山区河庄初级中学中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年浙江省杭州市朝晖中学中考数学模拟精编试卷含解析: 这是一份2022年浙江省杭州市朝晖中学中考数学模拟精编试卷含解析,共24页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map