|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届重庆市渝北区名校中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    2022届重庆市渝北区名校中考数学最后冲刺模拟试卷含解析01
    2022届重庆市渝北区名校中考数学最后冲刺模拟试卷含解析02
    2022届重庆市渝北区名校中考数学最后冲刺模拟试卷含解析03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届重庆市渝北区名校中考数学最后冲刺模拟试卷含解析

    展开
    这是一份2022届重庆市渝北区名校中考数学最后冲刺模拟试卷含解析,共16页。试卷主要包含了的整数部分是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )

    A. B. C. D.1
    2.如图,在中,边上的高是( )

    A. B. C. D.
    3.下列由左边到右边的变形,属于因式分解的是(  ).
    A.(x+1)(x-1)=x2-1
    B.x2-2x+1=x(x-2)+1
    C.a2-b2=(a+b)(a-b)
    D.mx+my+nx+ny=m(x+y)+n(x+y)
    4.的整数部分是(  )
    A.3 B.5 C.9 D.6
    5.从边长为的大正方形纸板中挖去一个边长为的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )

    A. B.
    C. D.
    6.关于的方程有实数根,则整数的最大值是( )
    A.6 B.7 C.8 D.9
    7.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为(  )
    A.1.8×105 B.1.8×104 C.0.18×106 D.18×104
    8.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )
    A. B.
    C. D.
    9.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB=6,则BD的长为( )

    A.4 B.5 C.8 D.10
    10.已知一元二次方程 的两个实数根分别是 x1 、 x2 则 x12 x2 + x1 x22 的值为( )
    A.-6 B.- 3 C.3 D.6
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F分别是AB,CD的中点,则EF=_____.

    12.化简:_____________.
    13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.

    14.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.

    15.4的平方根是 .
    16.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.

    三、解答题(共8题,共72分)
    17.(8分)解方程组.
    18.(8分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:

    7.2 9.69.67.89.3 4 6.58.59.99.6

    5.89.79.76.89.96.98.26.78.69.7
    根据上面的数据,将下表补充完整:

    4.0≤x≤4.9
    5.0≤x≤5.9
    6.0≤x≤6.9
    7.0≤x≤7.9
    8.0≤x≤8.9
    9.0≤x≤10.0

    1
    0
    1
    2
    1
    5

    ____
    ____
    _____
    ______
    _____
    _______
    (说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)
    两组样本数据的平均数、中位数、众数如表所示:
    结论:
    人员
    平均数(万元)
    中位数(万元)
    众数(万元)

    8.2
    8.9
    9.6

    8.2
    8.4
    9.7
    (1)估计乙业务员能获得奖金的月份有______个;
    (2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)
    19.(8分)已知AB是⊙O的直径,弦CD与AB相交,∠BAC=40°.
    (1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;
    (2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DP∥AC,求∠OCD的度数.

    20.(8分)如图,在△ABC中,∠C = 90°,E是BC上一点,ED⊥AB,垂足为D.
    求证:△ABC∽△EBD.

    21.(8分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?
    22.(10分)阅读下列材料:
    题目:如图,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,请用sinA、cosA表示sin2A.

    23.(12分)如图,曲线BC是反比例函数y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),抛物线y=﹣x2+2bx的顶点记作A.
    (1)求k的值.
    (2)判断点A是否可与点B重合;
    (3)若抛物线与BC有交点,求b的取值范围.

    24. (1)计算:(a-b)2-a(a-2b);
    (2)解方程:=.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.
    考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.
    2、D
    【解析】
    根据三角形的高线的定义解答.
    【详解】
    根据高的定义,AF为△ABC中BC边上的高.
    故选D.
    【点睛】
    本题考查了三角形的高的定义,熟记概念是解题的关键.
    3、C
    【解析】
    因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.
    【详解】
    解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,
    故选择C.
    【点睛】
    本题考查了因式分解的定义,牢记定义是解题关键.
    4、C
    【解析】
    解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.
    5、D
    【解析】
    分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.
    【详解】
    阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).
    即:a2﹣b2=(a+b)(a﹣b).
    所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
    故选:D.
    【点睛】
    考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.
    6、C
    【解析】
    方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
    【详解】
    当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
    当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
    取最大整数,即a=1.
    故选C.
    7、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    180000=1.8×105,
    故选A.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、C
    【解析】
    根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:,
    故选C.
    点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.
    9、D
    【解析】
    利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度.
    【详解】
    解:∵矩形ABCD的对角线AC,BD相交于点O,
    ∴∠BAD=90°,点O是线段BD的中点,
    ∵点M是AB的中点,
    ∴OM是△ABD的中位线,
    ∴AD=2OM=1.
    ∴在直角△ABD中,由勾股定理知:BD=.
    故选:D.
    【点睛】
    本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键.
    10、B
    【解析】
    根据根与系数的关系得到x1+x2=1,x1•x2=﹣1,再把x12x2+x1x22变形为x1•x2(x1+x2),然后利用整体代入的方法计算即可.
    【详解】
    根据题意得:x1+x2=1,x1•x2=﹣1,所以原式=x1•x2(x1+x2)=﹣1×1=-1.
    故选B.
    【点睛】
    本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2,x1•x2.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、3
    【解析】
    延长AC和BD,交于M点,M、E、F三点共线,EF=MF-ME.
    【详解】

    延长AC和BD,交于M点,M、E、F三点共线,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=,同理ME=,∴EF=MF-ME=4-1=3.
    【点睛】
    本题考查了直角三角形斜边中线的性质.
    12、
    【解析】
    根据分式的运算法则即可求解.
    【详解】
    原式=.
    故答案为:.
    【点睛】
    此题主要考查分式的运算,解题的关键是熟知分式的运算法则.
    13、π﹣1.
    【解析】
    连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.
    【详解】
    连接CD,作DM⊥BC,DN⊥AC.
    ∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.
    则扇形FDE的面积是:=π.
    ∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.
    又∵DM⊥BC,DN⊥AC,∴DM=DN.
    ∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.
    则阴影部分的面积是:π﹣1.
    故答案为π﹣1.

    【点睛】
    本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形DGCH=S四边形DMCN是关键.
    14、
    【解析】
    利用特殊三角形的三边关系,求出AM,AE长,求比值.
    【详解】
    解:如图所示,设BC=x,
    ∵在Rt△ABC中,∠B=90°,∠A=30°,
    ∴AC=2BC=2x,AB=BC=x,
    根据题意得:AD=BC=x,AE=DE=AB=x,
    如图,作EM⊥AD于M,则AM=AD=x,
    在Rt△AEM中,cos∠EAD=,
    故答案为:.

    【点睛】
    特殊三角形: 30°-60°-90°特殊三角形,三边比例是1::2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.
    15、±1.
    【解析】
    试题分析:∵,∴4的平方根是±1.故答案为±1.
    考点:平方根.
    16、
    【解析】
    试题分析:因为OC=OA,所以∠ACO=,所以∠AOC=45°,又直径垂直于弦,,所以CE=,所以CD=2CE=.
    考点:1.解直角三角形、2.垂径定理.

    三、解答题(共8题,共72分)
    17、或.
    【解析】
    把y=x代入,解得x的值,然后即可求出y的值;
    【详解】
    把(1)代入(2)得:x2+x﹣2=0,
    (x+2)(x﹣1)=0,
    解得:x=﹣2或1,
    当x=﹣2时,y=﹣2,
    当x=1时,y=1,
    ∴原方程组的解是或.
    【点睛】
    本题考查了高次方程的解法,关键是用代入法先求出一个未知数,再代入求出另一个未知数.
    18、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    【解析】
    (1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,
    (2)根据中位数和平均数即可解题.
    【详解】
    解:如图,
    销售额
    数量
    x
    人员
    4.0≤x≤4.9
    5.0≤x≤5.9
    6.0≤x≤6.9
    7.0≤x≤7.9
    8.0≤x≤8.9
    9.0≤x≤10.0

    1
    0
    1
    2
    1
    5

    0
    1
    3
    0
    2
    4
    (1)估计乙业务员能获得奖金的月份有6个;
    (2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
    【点睛】
    本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.
    19、(1)45°;(2)26°.
    【解析】
    (1)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;
    (2)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.
    【详解】
    (1)∵AB是⊙O的直径,∠BAC=38°, ∴∠ACB=90°,
    ∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,
    ∵D为弧AB的中点,∠AOB=180°,∴∠AOD=90°,
    ∴∠ABD=45°;

    (2)连接OD,
    ∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,
    ∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,
    ∵∠AOD是△ODP的一个外角,
    ∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,
    ∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,
    ∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.
    【点睛】
    本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    20、证明见解析
    【解析】
    试题分析:先根据垂直的定义得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根据有两个角相等的两三角形相似即可得出结论.
    试题解析:
    解:∵ED⊥AB,
    ∴∠EDB=90°.
    ∵∠C=90°,
    ∴∠EDB=∠C.
    ∵∠B=∠B,
    ∴∽.
    点睛:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.
    21、A、B两种型号的空调购买价分别为2120元、2320元
    【解析】
    试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.
    试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:
    解得:
    答:A、B两种型号的空调购买价分别为2120元、2320元
    22、sin2A=2cosAsinA
    【解析】
    先作出直角三角形的斜边的中线,进而求出,∠CED=2∠A,最后用三角函数的定义即可得出结论
    【详解】
    解:如图,
    作Rt△ABC的斜边AB上的中线CE,

    ∴∠CED=2∠A,
    过点C作CD⊥AB于D,
    在Rt△ACD中,CD=ACsinA,
    在Rt△ABC中,AC=ABcosA=cosA
    在Rt△CED中,sin2A=sin∠CED== 2ACsinA=2cosAsinA

    【点睛】
    此题主要解直角三角形,锐角三角函数的定义,直角三角形的斜边的中线等于斜边的一半,构造出直角三角形和∠CED=2∠A是解本题的关键.
    23、(1)12;(2)点A不与点B重合;(3)
    【解析】
    (1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;
    (2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;
    (3)当抛物线经过点B(4,3)时,解得,b= ,抛物线右半支经过点B;当抛物线经过点C,解得,b=,抛物线右半支经过点C;从而求得b的取值范围为≤b≤.
    【详解】
    解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数 的图象上,
    ∴k=4(1﹣m)=6×(﹣m),
    ∴解得m=﹣2,
    ∴k=4×[1﹣(﹣2)]=12;
    (2)∵m=﹣2,∴B(4,3),
    ∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,
    ∴A(b,b2).
    若点A与点B重合,则有b=4,且b2=3,显然不成立,
    ∴点A不与点B重合;
    (3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,
    解得,b=,
    显然抛物线右半支经过点B;
    当抛物线经过点C(6,2)时,有2=﹣62+2b×6,
    解得,b=,
    这时仍然是抛物线右半支经过点C,
    ∴b的取值范围为≤b≤.
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题.
    24、 (1) b2 (2)1
    【解析】
    分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.
    详解:(1) 解:原式=a2-2ab+b2-a2+2ab =b2 ;
    (2) 解:, 解得:x=1,
    经检验 x=1为原方程的根, 所以原方程的解为x=1.
    点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.

    相关试卷

    重庆市渝中学区重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份重庆市渝中学区重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,在平面直角坐标系中,点,已知点 A等内容,欢迎下载使用。

    重庆市渝北区名校2022年中考数学全真模拟试题含解析: 这是一份重庆市渝北区名校2022年中考数学全真模拟试题含解析,共23页。试卷主要包含了答题时请按要求用笔,我省2013年的快递业务量为1等内容,欢迎下载使用。

    重庆市南川中学2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份重庆市南川中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了计算÷的结果是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map