黑龙江省双鸭山市集贤县2021-2022学年八年级下学期期末测试数学试题(word版含答案)
展开2021—2022学年度第二学期期末测试
八年级数学试题
测试时间:120分钟 测试总分:120分
温馨提示:本试卷要求:卷面整洁、字迹工整、错别字不得分、拼音代字不得分
一、单选题(每小题3分,满分30分)
1.下列二次根式中,是最简二次根式的是( )
A. B. C. D.
2.下列运算中正确的是( )
A. B.=﹣6 C. D.
3.下列各组数中,不能构成直角三角形的一组是( )
A.3,4,5 B.1,, C.2,2,3 D.5,12,13
4.如图,Rt△ABC中,,将△ABC折叠,使点C与的中点D重合,折痕交于点M,交于点N,则线段的长为( ).
A. B. C.3 D.
【4题图 】 【5题图】 【10题图】
5.如图,在△ABC中,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=12,则BF的长为( )
A.7 B.8 C.10 D.16
6.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是( )
A.矩形 B.一组对边相等,另一组对边平行的四边形
C.对角线相等的四边形 D.对角线互相垂直的四边形
7.2011年春季因干旱影响,政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:
则关于这20户家庭的月用水量,下列说法错误的是( )
A.中位数是6吨 B.平均数是5.8吨
C.众数是6吨 D.极差是4吨
8.一次函数y=2(x+1)﹣1不经过第( )象限
A.一 B.二 C.三 D.四
9.直线与直线的交点为( )
A. B. C. D.
10.如图,已知在正方形ABCD中,E是BC上一点,将正方形的边CD沿DE折叠到DF,延长EF交AB于点G,连接DG.现有如下4个结论:①AG=GF;②AG与EC一定不相等;③;④的周长是一个定值.其中正确的个数为( )
A.1 B.2 C.3 D.4
二、填空题(每小题3分,满分30分)
11.函数中自变量x的取值范围是_________.
12.若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=24cm,则当OA=_____cm时,四边形ABCD是平行四边形.
13.已知直线,将直线l向下平移3个单位长度得到的直线解析式为_________.
【14题图 】 【15题图】 【16题图】
14.如图,在▱ABCD中,∠B=45°,AE⊥BC于点E,连接AC,若AC=5,AE=3,则AD的长为 _____.
15. 如图,矩形ABCD中,对角线AC与BD相交于点O,过点C作CE⊥BD,垂足为点E.若OE=1,BD=2.则CE=___________.
16.一次函数y=ax+b的图象如图所示,则不等式ax+b⩾0的解集是________.
17.如图,在菱形ABCD中,对角线,,点E是边AB的中点,点F、P分别是BC、AC上动点,则最小值为______.
【17题图 】 【18题图】 【20题图】
18.已知正方形ABCD中,点E在边DC上,DE=2,EC=1,如图所示,把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F、C两点的距离为_____.
19.已知样本:3,4,0,﹣2,6,1,那么这个样本的方差是_____.
20.如图,直线⊥轴于点(1,0),直线⊥轴于点(2,0),直线⊥轴于点(3,0),……⊥轴于点 (n,0).函数的图象与直线、、、……分别交于点、、、……;函数的图象与直线、、、……分别交于点、、、……;如果△的面积记作,四边形的面积记作,四边形的面积记作,……四边形的面积记作,那么=_____.
三、解答题(满分60分)
21、(满分6分,每小题3分)
计算.(1)
(2)
22、(满分6分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)
23、(满分6分)已知一次函数的图象经过点和.
(1)求该函数的表达式;
(2)若点是轴上一点,且的面积为10,求点的坐标.
24、(满分6分)某公司对应聘者进行面试,按专业知识、工作经验、仪表形象给应聘者打分,这三个方面的重要性之比为6:3:1.对应聘的王丽、张瑛两人的打分如下表:如果两人中只录取一人,根据表格确定个人成绩,谁将被录用?
| 王丽 | 张瑛 |
专业知识 | 14 | 18 |
工作经验 | 16 | 16 |
仪表形象 | 18 | 12 |
25、(满分8分)某物流公可的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公可的一辆货车B从甲地出发送货至乙地,货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.
(1)时,求货车B距甲地的距离y与时间x的关系式;
(2)求货车B到乙地后,货车A还需多长时间到达甲地.
26、(满分8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.
(1)求证:CE=AD:
(2)当D为AB中点时,证明:四边形BECD是菱形.
(3)在满足(2)的条件下,当△ABC满足条件__________时,四边形BECD是正方形.
27、(满分10分)现从、两个蔬菜市场向甲、乙两地运送蔬菜, 、两个蔬菜场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从蔬菜市场向甲,乙两地运送蔬菜的费用分别为50元/吨和30元/吨;从蔬菜市场向甲、乙两地运送蔬菜的费用分别为60元/吨和45元/吨.设从蔬菜市场向甲地运送蔬菜吨.
(1)请完成下表:
| 运往甲地(单位:吨) | 运往乙地(单位:吨) |
| | |
|
|
(2)设总运费为,请求出与的函数关系式,并直接写出自变量x的取值范围;
(3)怎样调运蔬菜可使总运费最少?最少运费为多少?
28、(满分10分)如图,在四边形中,AD∥BC,∠B=90°,其中AB、AD、BC的长(单位:cm)满足式子=0.动点P从点A出发,以每秒1cm/s速度向点D运动;动点Q从点C同时出发,以的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.
(1) 求AB、AD、BC的长;
(2) 设梯形ABQP的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;
(3) 直接写出t为何值时,.
2021-2022学年度第二学期期末考试八年级数学参考答案:
一、单选题(每小题3分,满分30分)
1.A 2.A 3.C 4.D 5.D
6.C 7.D 8.D 9.B 10.C
二、填空题(每小题3分,满分30分)
11. 12.12 13. 14.7 15.1
16.x≤3 17. 18.1或5. 19.7 20.2021.5
三、解答题(满分60分)
21.(6分)解:===0---------3分
(2);---------3分
22.(6分)解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,
∴(米),---------2分
∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,
∴CD=13-0.5×10=8(米),---------1分
∴(米),---------1分
∴BD=AB-AD=12-(米),---------1分
答:船向岸边移动了(12-)米.---------1分
23.(6分)次函数y=kx+b(k≠0)的图象经过点A(−2,−4)和B(2,0),进而得
,------1分
解得k=1,b=−2,----------1分
∴该函数的表达式:y=x−2;----------1分
(2)∵点P是x轴上一点,设P(x,0),∴BP=|x−2|,
∵△ABP的面积为10,∴×4×|x−2|=10,----------1分
∴|x−2|=5, ∴x−2=5或x−2=−5,解得x1=−3或x2=7,----------1分
∴点P的坐标(−3,0)或(7,0).----------1分
24.(6分)解:王丽的成绩为:(分),-----------2分
张瑛的成绩为:(分),-----------2分
由于张瑛的分数比王丽的高,所以应录用张瑛.-----------2分
25.(8分)(1)设货车B距甲地的距离y与时间x的关系为,------------1分
将、代入,
得,------------1
解得,------------1
货车B距甲地的距离y与时间x的关系式为;-----1分
(2)当时,,-----------1分
故货车A的速度为,-----------1分
∴货车A到达甲地需要的时间为:,-----------1分
,货车B到乙地后,货车A还需1h到达甲地.------------1
26.(8分)(1)∵DE⊥BC, ∴∠DFB=90°,
∵∠ACB=90°, ∴∠ACB=∠DFB,
∴AC∥DE,------------1分
∵MN∥AB,即CE∥AD,
∴四边形ADEC是平行四边形,----------1分
∴CE=AD.------------1分
(2)证明:∵D为AB中点,∠ACB=90°,
∴AD=BD=CD,------------1分
∵CE=AD,∴BD=CE,
∵BD∥CE,∴四边形BECD是平行四边形,------------1分
∵BD=CD,∴四边形BECD是菱形.------------1分
(3)AB=AC 或∠B=∠C或△ABC是等腰三角形等------------2分
27.(10分)(1)解:填表如下:-----------3分,每空1分
| 运往甲地(单位:吨) | 运往乙地(单位:吨) |
| ||
(2)由题意得: ,------------3分
∴与的函数关系式为: ;------------自变量的取值范围1分
(3)∵在 ,∵,∴随的增大而增大 ------------1分
∴当 =1时,有最小值. -----------1分
即:从蔬菜市场向甲地运送蔬菜1吨,向乙地运送13吨,从蔬菜市场向甲地运送14吨,总运费最少,为1280元.------------1分
28.(10分)解:(1)∵=0.-----------1分
又∵-----------1分
∴AB-8=0,AD-24=0,BC-26=0
∴AB=8,AD=24,BC=26-------------1分
(2)AP=t,BQ=BC-CQ=26-3t-----------1分
S=(AP+BQ)AB=(t+26-3t)8=-8t+104-----------1分(0≤t≤)----------1分
(3)t=6或7时,PQ=CD------------4分
黑龙江省双鸭山市集贤县2022-2023学年七年级下学期期中数学试题: 这是一份黑龙江省双鸭山市集贤县2022-2023学年七年级下学期期中数学试题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
黑龙江省双鸭山市集贤县2022-2023学年七年级下学期期末数学试题: 这是一份黑龙江省双鸭山市集贤县2022-2023学年七年级下学期期末数学试题,共5页。
黑龙江省双鸭山市集贤县2022-2023学年九年级上学期期末考试数学试题(含答案): 这是一份黑龙江省双鸭山市集贤县2022-2023学年九年级上学期期末考试数学试题(含答案),共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。