年终活动
搜索
    上传资料 赚现金

    2022年北京市北师大附中中考一模数学试题含解析

    立即下载
    加入资料篮
    2022年北京市北师大附中中考一模数学试题含解析第1页
    2022年北京市北师大附中中考一模数学试题含解析第2页
    2022年北京市北师大附中中考一模数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年北京市北师大附中中考一模数学试题含解析

    展开

    这是一份2022年北京市北师大附中中考一模数学试题含解析,共19页。试卷主要包含了运用乘法公式计算,下面说法正确的个数有等内容,欢迎下载使用。
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.6的相反数为
    A.-6B.6C.D.
    2.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:
    在每天所走的步数这组数据中,众数和中位数分别是( )
    A.1.3,1.1B.1.3,1.3C.1.4,1.4D.1.3,1.4
    3.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
    A.B.
    C.D.
    4.已知抛物线y=(x﹣)(x﹣)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是( )
    A.B.C.D.
    5.一元一次不等式组的解集中,整数解的个数是( )
    A.4 B.5 C.6 D.7
    6.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
    A.平均数B.中位数C.众数D.方差
    7.运用乘法公式计算(3﹣a)(a+3)的结果是( )
    A.a2﹣6a+9B.a2﹣9C.9﹣a2D.a2﹣3a+9
    8.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )
    A.B.C.D.
    9.下面说法正确的个数有( )
    ①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;
    ②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;
    ③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;
    ④如果∠A=∠B=∠C,那么△ABC是直角三角形;
    ⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;
    ⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.
    A.3个 B.4个 C.5个 D.6个
    10.一个几何体的三视图如图所示,这个几何体是( )
    A.三菱柱B.三棱锥C.长方体D.圆柱体
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(﹣1,0),(﹣4,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣2x﹣6上时,则点C沿x轴向左平移了_____个单位长度.
    12.新定义[a,b]为一次函数(其中a≠0,且a,b为实数)的“关联数”,若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x的方程的解为 .
    13.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为________度.
    14.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于_____.
    15.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.
    16.因式分解:_______________.
    17.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.
    请根据图中提供的信息,回答下列问题:
    (1)a= %,并补全条形图.
    (2)在本次抽样调查中,众数和中位数分别是多少?
    (3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?
    19.(5分)如图,在平面直角坐标系中,正方形的边长为,顶点、分别在轴、轴的正半轴,抛物线经过、两点,点为抛物线的顶点,连接、、.
    求此抛物线的解析式.
    求此抛物线顶点的坐标和四边形的面积.
    20.(8分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.
    (1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.
    21.(10分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.
    请根据以上的信息,回答下列问题:
    (1)补全扇形统计图和条形统计图;
    (2)所抽查学生参加社会实践活动天数的众数是 (选填:A、B、C、D、E);
    (3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?
    22.(10分)计算:()﹣2﹣+(﹣2)0+|2﹣|
    23.(12分)如图,在菱形ABCD中,E、F分别为AD和CD上的点,且AE=CF,连接AF、CE交于点G,求证:点G在BD上.
    24.(14分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
    (1)求抛物线解析式及顶点坐标;
    (2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
    (3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
    ②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据相反数的定义进行求解.
    【详解】
    1的相反数为:﹣1.故选A.
    【点睛】
    本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.
    2、B
    【解析】
    在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.
    【详解】
    在这组数据中出现次数最多的是1.1,即众数是1.1.
    要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.
    故选B.
    【点睛】
    本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.
    3、C
    【解析】
    根据全等三角形的判定定理进行判断.
    【详解】
    解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
    故本选项不符合题意;
    B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
    故本选项不符合题意;
    C、
    如图1,∵∠DEC=∠B+∠BDE,
    ∴x°+∠FEC=x°+∠BDE,
    ∴∠FEC=∠BDE,
    所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
    所以不能判定两个小三角形全等,故本选项符合题意;
    D、
    如图2,∵∠DEC=∠B+∠BDE,
    ∴x°+∠FEC=x°+∠BDE,
    ∴∠FEC=∠BDE,
    ∵BD=EC=2,∠B=∠C,
    ∴△BDE≌△CEF,
    所以能判定两个小三角形全等,故本选项不符合题意;
    由于本题选择可能得不到全等三角形纸片的图形,
    故选C.
    【点睛】
    本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
    4、C
    【解析】
    代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.
    【详解】
    解:当y=0时,有(x-)(x-)=0,
    解得:x1=,x2=,
    ∴MaNa=-,
    ∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.
    故选C.
    【点睛】
    本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键.
    5、C
    【解析】
    试题分析:∵解不等式得:,解不等式,得:x≤5,∴不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C.
    考点:一元一次不等式组的整数解.
    6、B
    【解析】
    总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
    【详解】
    要想知道自己是否入选,老师只需公布第五名的成绩,
    即中位数.
    故选B.
    7、C
    【解析】
    根据平方差公式计算可得.
    【详解】
    解:(3﹣a)(a+3)=32﹣a2=9﹣a2,
    故选C.
    【点睛】
    本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.
    8、D
    【解析】
    根据抛物线和直线的关系分析.
    【详解】
    由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.
    故选D
    【点睛】
    考核知识点:反比例函数图象.
    9、C
    【解析】
    试题分析:①∵三角形三个内角的比是1:2:3,
    ∴设三角形的三个内角分别为x,2x,3x,
    ∴x+2x+3x=180°,解得x=30°,
    ∴3x=3×30°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ②∵三角形的一个外角与它相邻的一个内角的和是180°,
    ∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;
    ③∵直角三角形的三条高的交点恰好是三角形的一个顶点,
    ∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;
    ④∵∠A=∠B=∠C,
    ∴设∠A=∠B=x,则∠C=2x,
    ∴x+x+2x=180°,解得x=45°,
    ∴2x=2×45°=90°,
    ∴此三角形是直角三角形,故本小题正确;
    ⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,
    ∴三角形一个内角也等于另外两个内角的和,
    ∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;
    ⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,
    由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
    ∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.
    故选D.
    考点:1.三角形内角和定理;2.三角形的外角性质.
    10、A
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
    【详解】
    由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.
    故选:B.
    【点睛】
    此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.
    【详解】
    解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,
    ∴AC==1,
    ∴点C的坐标为(﹣1,1).
    当y=﹣2x﹣6=1时,x=﹣5,
    ∵﹣1﹣(﹣5)=1,
    ∴点C沿x轴向左平移1个单位长度才能落在直线y=﹣2x﹣6上.
    故答案为1.
    【点睛】
    本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.
    12、.
    【解析】
    试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,
    得到y=3x+m+2为正比例函数,即m+2=0,
    解得:m=-2,
    则分式方程为,
    去分母得:2-(x-1)=2(x-1),
    去括号得:2-x+1=2x-2,
    解得:x=,
    经检验x=是分式方程的解
    考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.
    13、56
    【解析】
    解:∵AB∥CD,

    又∵CE⊥BE,
    ∴Rt△CDE中,
    故答案为56.
    14、40°.
    【解析】
    ∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,
    ∴∠ACD=∠BCD,∠CDB=∠CDB′,
    ∵∠ACB=90°,∠A=25°,
    ∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,
    ∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,
    ∴∠ADB′=180°﹣70°﹣70°=40°.
    故答案为40°.
    15、
    【解析】
    列举出所有情况,看在第四象限的情况数占总情况数的多少即可.
    【详解】
    如图:
    共有12种情况,在第三象限的情况数有2种,
    故不再第三象限的共10种,
    不在第三象限的概率为,
    故答案为.
    【点睛】
    本题考查了树状图法的知识,解题的关键是列出树状图求出概率.
    16、x3(y+1)(y-1)
    【解析】
    先提取公因式x3,再利用平方差公式分解可得.
    【详解】
    解:原式=x3(y2-1)=x3(y+1)(y-1),
    故答案为x3(y+1)(y-1).
    【点睛】
    本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤--先提取公因式,再利用公式法分解.
    17、(,1)或(﹣,1)
    【解析】
    根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可
    【详解】
    根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.
    当y=1时, x1-1=1,解得x=±
    当y=-1时, x1-1=-1,方程无解
    故P点的坐标为()或(-)
    【点睛】
    此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.
    三、解答题(共7小题,满分69分)
    18、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.
    【解析】
    (1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;
    (2)根据众数和中位数的定义即可求出答案;
    (3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.
    【详解】
    解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,
    该扇形所对圆心角的度数为310°×10%=31°,
    参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:
    故答案为10;
    (2)抽样调查中总人数为100人,
    结合条形统计图可得:众数是5,中位数是1.
    (3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),
    活动时间不少于1天的学生人数大约有5400人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    19、 ;.
    【解析】
    (1)由正方形的性质可求得B、C的坐标,代入抛物线解析式可求得b、c的值,则可求得抛物线的解析式;
    (2)把抛物线解析式化为顶点式可求得D点坐标,再由S四边形ABDC=S△ABC+S△BCD可求得四边形ABDC的面积.
    【详解】
    由已知得:,,
    把与坐标代入得:

    解得:,,
    则解析式为;
    ∵,
    ∴抛物线顶点坐标为,
    则.
    【点睛】
    二次函数的综合应用.解题的关键是:在(1)中确定出B、C的坐标是解题的关键,在(2)中把四边形转化成两个三角形.
    20、(1)见解析;(2)AC=1.
    【解析】
    (1)要证明DB为⊙O的切线,只要证明∠OBD=90即可.
    (2)根据已知及直角三角形的性质可以得到PD=2BD=2DA=2,再利用等角对等边可以得到AC=AP,这样求得AP的值就得出了AC的长.
    【详解】
    (1)证明:连接OD;
    ∵PA为⊙O切线,
    ∴∠OAD=90°;
    在△OAD和△OBD中,

    ∴△OAD≌△OBD,
    ∴∠OBD=∠OAD=90°,
    ∴OB⊥BD
    ∴DB为⊙O的切线
    (2)解:在Rt△OAP中;
    ∵PB=OB=OA,
    ∴OP=2OA,
    ∴∠OPA=10°,
    ∴∠POA=60°=2∠C,
    ∴PD=2BD=2DA=2,
    ∴∠OPA=∠C=10°,
    ∴AC=AP=1.
    【点睛】
    本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.
    21、(1)见解析;(2)A;(3)800人.
    【解析】
    (1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;
    (2)根据众数的定义即可求解;
    (3)利用总人数2000乘以对应的百分比即可求解.
    【详解】
    解:(1)∵被调查的学生人数为24÷40%=60人,
    ∴D类别人数为60﹣(24+12+15+3)=6人,
    则D类别的百分比为×100%=10%,
    补全图形如下:
    (2)所抽查学生参加社会实践活动天数的众数是A,
    故答案为:A;
    (3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    22、2
    【解析】
    直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案.
    【详解】
    解:原式=4﹣3+1+2﹣2=2.
    【点睛】
    本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.
    23、见解析
    【解析】
    先连接AC,根据菱形性质证明△EAC≌△FCA,然后结合中垂线的性质即可证明点G在BD上.
    【详解】
    证明:如图,连接AC.
    ∵四边形ABCD是菱形,∴DA=DC,BD与AC互相垂直平分,
    ∴∠EAC=∠FCA.
    ∵AE=CF,AC=CA, ∴△EAC≌△FCA,
    ∴∠ECA=∠FAC, ∴GA=GC,
    ∴点G在AC的中垂线上,
    ∴点G在BD上.
    【点睛】
    此题重点考察学生对菱形性质的理解,掌握菱形性质和三角形全等证明方法是解题的关键.
    24、(1)抛物线解析式为,顶点为;(2),1<<1;(3)①四边形是菱形;②不存在,理由见解析
    【解析】
    (1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.
    (2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式.
    (3)①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.
    ②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.
    【详解】
    (1)由抛物线的对称轴是,可设解析式为.
    把A、B两点坐标代入上式,得
    解之,得
    故抛物线解析式为,顶点为
    (2)∵点在抛物线上,位于第四象限,且坐标适合

    ∴y0,-y表示点E到OA的距离.
    ∵OA是的对角线,
    ∴.
    因为抛物线与轴的两个交点是(1,0)的(1,0),所以,自变量的
    取值范围是1<<1.
    (3)①根据题意,当S = 24时,即.
    化简,得解之,得
    故所求的点E有两个,分别为E1(3,-4),E2(4,-4).
    点E1(3,-4)满足OE = AE,所以是菱形;
    点E2(4,-4)不满足OE = AE,所以不是菱形.
    ②当OA⊥EF,且OA = EF时,是正方形,
    此时点E的坐标只能是(3,-3).
    而坐标为(3,-3)的点不在抛物线上,
    故不存在这样的点E,使为正方形.
    步数(万步)
    1.0
    1.2
    1.1
    1.4
    1.3
    天数
    3
    3
    5
    7
    12

    相关试卷

    2024年北京市人大附中朝阳学校中考数学一模试卷(含详细答案解析):

    这是一份2024年北京市人大附中朝阳学校中考数学一模试卷(含详细答案解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年北京市人大附中朝阳学校中考数学一模试卷(含解析):

    这是一份2024年北京市人大附中朝阳学校中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年北京市海淀区首都师大附中中考数学三模试卷(含解析):

    这是一份2023年北京市海淀区首都师大附中中考数学三模试卷(含解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map