2022年福建省福安市环城区片区中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为( )米.
A.25 B. C. D.
2.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是( )
A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=1
3.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是( )
A.甲 B.乙 C.甲乙同样稳定 D.无法确定
4.平面上直线a、c与b相交(数据如图),当直线c绕点O旋转某一角度时与a平行,则旋转的最小度数是( )
A.60° B.50° C.40° D.30°
5.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )
A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)
6.如图,不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
7.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
A. B. C. D.
8.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )
A.7 B.8 C.9 D.10
9.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是( )
A.关于x轴对称 B.关于y轴对称
C.绕原点逆时针旋转 D.绕原点顺时针旋转
10.不等式组的解集在数轴上表示为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.一个n边形的每个内角都为144°,则边数n为______.
12.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=(k≠0)的图象恰好经过A′,B,则k的值为_____.
13.如图,随机闭合开关,,中的两个,能让两盏灯泡和同时发光的概率为___________.
14.因式分解:a3b﹣ab3=_____.
15.已知一个正六边形的边心距为,则它的半径为______ .
16.如图,点M是反比例函数(x>0)图像上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为
A.1 B.2 C.4 D.不能确定
17.如果a,b分别是2016的两个平方根,那么a+b﹣ab=___.
三、解答题(共7小题,满分69分)
18.(10分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.求证:△AEC≌△BED;若∠1=40°,求∠BDE的度数.
19.(5分)对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.
例如,图中的函数有4,﹣1两个反向值,其反向距离n等于1.
(1)分别判断函数y=﹣x+1,y=,y=x2有没有反向值?如果有,直接写出其反向距离;
(2)对于函数y=x2﹣b2x,
①若其反向距离为零,求b的值;
②若﹣1≤b≤3,求其反向距离n的取值范围;
(3)若函数y=请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.
20.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,.
请在如图所示的网格平面内作出平面直角坐标系;请作出关于轴对称的;点的坐标为 .的面积为 .
21.(10分)已知,,,斜边,将绕点顺时针旋转,如图1,连接.
(1)填空: ;
(2)如图1,连接,作,垂足为,求的长度;
(3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?
22.(10分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)
(1)求车架档AD的长;
(2)求车座点E到车架档AB的距离(结果精确到1cm).
23.(12分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.
24.(14分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
解:过点B作BE⊥AD于E.
设BE=x.
∵∠BCD=60°,tan∠BCE,
,
在直角△ABE中,AE=,AC=50米,
则,
解得
即小岛B到公路l的距离为,
故选B.
2、A
【解析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.
【详解】
∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,
∴a=﹣2,b=1是假命题的反例.
故选A.
【点睛】
本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.
3、A
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵S甲2=1.4,S乙2=2.5,
∴S甲2<S乙2,
∴甲、乙两名同学成绩更稳定的是甲;
故选A.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
4、C
【解析】
先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.
【详解】
解:∵∠1=180°﹣100°=80°,a∥c,
∴∠α=180°﹣80°﹣60°=40°.
故选:C.
【点睛】
本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.
5、C
【解析】
根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.
【详解】
解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,
∵其中一个交点的坐标为,则另一个交点的坐标为,
故选C.
【点睛】
考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.
6、B
【解析】
首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.
【详解】
解:解第一个不等式得:x>-1;
解第二个不等式得:x≤1,
在数轴上表示,
故选B.
【点睛】
此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时 “≥” ,“≤” 要用实心圆点表示; “ <“ >” 要用空心圆点表示.
7、B
【解析】
△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
【详解】
解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
符合题意的函数关系的图象是B;
故选B.
【点睛】
本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
8、B
【解析】
根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.
【详解】
在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,
∴AC===10,
∵DE是△ABC的中位线,
∴DF∥BM,DE=BC=3,
∴∠EFC=∠FCM,
∵∠FCE=∠FCM,
∴∠EFC=∠ECF,
∴EC=EF=AC=5,
∴DF=DE+EF=3+5=2.
故选B.
9、C
【解析】
分析:根据旋转的定义得到即可.
详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),
所以点A绕原点逆时针旋转90°得到点B,
故选C.
点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.
10、A
【解析】
根据不等式组的解集在数轴上表示的方法即可解答.
【详解】
∵x≥﹣2,故以﹣2为实心端点向右画,x<1,故以1为空心端点向左画.
故选A.
【点睛】
本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:>、≥向右画,<、≤向左画, “≤”、“≥”要用实心圆点表示;“<”、“>”要用空心圆点表示.
二、填空题(共7小题,每小题3分,满分21分)
11、10
【解析】
解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36°,因为多边形的外角和是360°,所以这个多边形的边数等于360°÷36°=10,
故答案为:10
12、
【解析】
解:∵四边形ABCO是矩形,AB=1,
∴设B(m,1),∴OA=BC=m,
∵四边形OA′B′D与四边形OABD关于直线OD对称,
∴OA′=OA=m,∠A′OD=∠AOD=30°
∴∠A′OA=60°,
过A′作A′E⊥OA于E,
∴OE=m,A′E=m,
∴A′(m,m),
∵反比例函数(k≠0)的图象恰好经过点A′,B,
∴ m•m=m,∴m=,∴k=
故答案为
13、
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.
【详解】
解:画树状图得:
由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,
∴能让两盏灯泡同时发光的概率,
故答案为:.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
14、ab(a+b)(a﹣b)
【解析】
先提取公因式ab,然后再利用平方差公式分解即可.
【详解】
a3b﹣ab3
=ab(a2﹣b2)
=ab(a+b)(a﹣b),
故答案为ab(a+b)(a﹣b).
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.
15、2
【解析】
试题分析:设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得OA.
解:如图所示,
在Rt△AOG中,OG=,∠AOG=30°,
∴OA=OG÷cos 30°=÷=2;
故答案为2.
点睛:本题主要考查正多边形和圆的关系. 解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.
16、A
【解析】
可以设出M的坐标,的面积即可利用M的坐标表示,据此即可求解.
【详解】
设M的坐标是(m,n),则mn=2.
则MN=m,的MN边上的高等于n.
则的面积
故选A.
【点睛】
考查反比例函数系数k的几何意义,是常考点,需要学生熟练掌握.
17、1
【解析】
先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论.
【详解】
∵a,b分别是1的两个平方根,
∴
∵a,b分别是1的两个平方根,
∴a+b=0,
∴ab=a×(﹣a)=﹣a2=﹣1,
∴a+b﹣ab=0﹣(﹣1)=1,
故答案为:1.
【点睛】
此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质.
三、解答题(共7小题,满分69分)
18、(1)见解析;(1)70°.
【解析】
(1)根据全等三角形的判定即可判断△AEC≌△BED;
(1)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.
【详解】
证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∴∠BEO=∠1.
又∵∠1=∠1,∴∠1=∠BEO,∴∠AEC=∠BED.
在△AEC和△BED中,
∴△AEC≌△BED(ASA).
(1)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,
∴∠BDE=∠C=70°.
【点睛】
本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.
19、(1)y=−有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=2.
【解析】
(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;
(2)①根据题意可以求得相应的b的值;
②根据题意和b的取值范围可以求得相应的n的取值范围;
(3)根据题目中的函数解析式和题意可以解答本题.
【详解】
(1)由题意可得,
当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,
当﹣m=时,m=±1,∴n=1﹣(﹣1)=2,故y=有反向值,反向距离为2,
当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;
(2)①令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∵反向距离为零,
∴|b2﹣1﹣0|=0,
解得,b=±1;
②令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∴n=|b2﹣1﹣0|=|b2﹣1|,
∵﹣1≤b≤3,
∴0≤n≤8;
(3)∵y=,
∴当x≥m时,
﹣m=m2﹣3m,得m=0或m=2,
∴n=2﹣0=2,
∴m>2或m≤﹣2;
当x<m时,
﹣m=﹣m2﹣3m,
解得,m=0或m=﹣2,
∴n=0﹣(﹣2)=2,
∴﹣2<m≤2,
由上可得,当m>2或m≤﹣2时,n=2,
当﹣2<m≤2时,n=2.
【点睛】
本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.
20、(1)见解析;(2)见解析;(3);(4)4.
【解析】
(1)根据C点坐标确定原点位置,然后作出坐标系即可;
(2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;
(3)根据点在坐标系中的位置写出其坐标即可
(4)利用长方形的面积剪去周围多余三角形的面积即可.
【详解】
解:(1)如图所示:
(2)如图所示:
(3)结合图形可得:;
(4) .
【点睛】
此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.
21、(1)1;(2);(3)x时,y有最大值,最大值.
【解析】
(1)只要证明△OBC是等边三角形即可;
(2)求出△AOC的面积,利用三角形的面积公式计算即可;
(3)分三种情形讨论求解即可解决问题:①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.
【详解】
(1)由旋转性质可知:OB=OC,∠BOC=1°,
∴△OBC是等边三角形,
∴∠OBC=1°.
故答案为1.
(2)如图1中.
∵OB=4,∠ABO=30°,
∴OAOB=2,ABOA=2,
∴S△AOC•OA•AB2×2.
∵△BOC是等边三角形,
∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,
∴AC,
∴OP.
(3)①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.
则NE=ON•sin1°x,
∴S△OMN•OM•NE1.5xx,
∴yx2,
∴x时,y有最大值,最大值.
②当x≤4时,M在BC上运动,N在OB上运动.
作MH⊥OB于H.
则BM=8﹣1.5x,MH=BM•sin1°(8﹣1.5x),
∴yON×MHx2+2x.
当x时,y取最大值,y,
③当4<x≤4.8时,M、N都在BC上运动,
作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,
∴y•MN•OG=12x,
当x=4时,y有最大值,最大值=2.
综上所述:y有最大值,最大值为.
【点睛】
本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.
22、63cm.
【解析】
试题分析:(1)在Rt ACD,AC=45,DC=60,根据勾股定理可得AD= 即可得到AD的长度;(2)过点E作EF AB,垂足为F,由AE=AC+CE,在直角 EFA中,根据EF=AEsin75°可求出EF的长度,即为点E到车架档AB的距离;
试题解析:
23、见解析,.
【解析】
画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.
【详解】
解:画树状图为:
共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,
所以两次抽取的卡片上的数字都是偶数的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
24、 (1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.
【解析】
【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;
(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;
(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.
【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;
(2)∵100﹣x≤2x,
∴x≥,
∵y=﹣100x+50000中k=﹣100<0,
∴y随x的增大而减小,
∵x为正数,
∴x=34时,y取得最大值,最大值为46600,
答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;
(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,
33≤x≤60,
①当0<a<100时,y随x的增大而减小,
∴当x=34时,y取最大值,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
②a=100时,a﹣100=0,y=50000,
即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;
③当100<a<200时,a﹣100>0,y随x的增大而增大,
∴当x=60时,y取得最大值.
即商店购进60台A型电脑和40台B型电脑的销售利润最大.
【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.
福建省福安市环城区片区2023-2024学年数学九上期末经典试题含答案: 这是一份福建省福安市环城区片区2023-2024学年数学九上期末经典试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年福建省福安市环城区片区数学九上期末学业水平测试试题含答案: 这是一份2023-2024学年福建省福安市环城区片区数学九上期末学业水平测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列函数中,一定是二次函数的是等内容,欢迎下载使用。
2022-2023学年福建省福安市环城区片区数学七下期末检测模拟试题含答案: 这是一份2022-2023学年福建省福安市环城区片区数学七下期末检测模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,计算=等内容,欢迎下载使用。