


2022年福建省泉州台商投资区中考五模数学试题含解析
展开
这是一份2022年福建省泉州台商投资区中考五模数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为( )
A.(1,4) B.(7,4) C.(6,4) D.(8,3)
2.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为( )
A.31cm B.41cm C.51cm D.61cm
3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
A.30° B.25°
C.20° D.15°
4.若|a|=﹣a,则a为( )
A.a是负数 B.a是正数 C.a=0 D.负数或零
5.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为( )
A.(3,2) B.(3,1) C.(2,2) D.(4,2)
6.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应 的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是 ( )
A. B.
C. D.
7.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是( )
A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm2
8.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )
A.7海里/时 B.7海里/时 C.7海里/时 D.28海里/时
9.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是( )
A.27° B.34° C.36° D.54°
10.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )
A.小亮骑自行车的平均速度是12 km/h
B.妈妈比小亮提前0.5 h到达姥姥家
C.妈妈在距家12 km处追上小亮
D.9:30妈妈追上小亮
二、填空题(共7小题,每小题3分,满分21分)
11.如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_____.
12.如图,在 Rt△ABC 中,∠C=90°,AM 是 BC 边上的中线,cos∠AMC ,则 tan∠B 的值为__________.
13.对于函数,我们定义(m、n为常数).
例如,则.
已知:.若方程有两个相等实数根,则m的值为__________.
14.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为 .
15.如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为________.
16.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是__m.
17.若xay与3x2yb是同类项,则ab的值为_____.
三、解答题(共7小题,满分69分)
18.(10分)解不等式组并写出它的所有整数解.
19.(5分)如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=1.求⊙O的面积;若D为⊙O上一点,且△ABD为等腰三角形,求CD的长.
20.(8分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.
21.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.
22.(10分)如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.
(1)若∠G=48°,求∠ACB的度数;
(1)若AB=AE,求证:∠BAD=∠COF;
(3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=,求的值.
23.(12分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.
24.(14分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.
综合运用:在你所作的图中,AB与⊙O的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
如图,
经过6次反弹后动点回到出发点(0,3),
∵2018÷6=336…2,
∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,
点P的坐标为(7,4).
故选C.
2、C
【解析】
∵DG是AB边的垂直平分线,
∴GA=GB,
△AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,
∴△ABC的周长=AC+BC+AB=51cm,
故选C.
3、B
【解析】
根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,
4、D
【解析】
根据绝对值的性质解答.
【详解】
解:当a≤0时,|a|=-a,
∴|a|=-a时,a为负数或零,
故选D.
【点睛】
本题考查的是绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.
5、A
【解析】
∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,
∴=,
∵BG=6,
∴AD=BC=2,
∵AD∥BG,
∴△OAD∽△OBG,
∴=,
∴=,
解得:OA=1,∴OB=3,
∴C点坐标为:(3,2),
故选A.
6、B
【解析】
试题解析:∵转盘被等分成6个扇形区域,
而黄色区域占其中的一个,
∴指针指向黄色区域的概率=.
故选A.
考点:几何概率.
7、A
【解析】
根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.
【详解】
∵圆锥的轴截面是一个边长为3cm的等边三角形,
∴底面半径=1.5cm,底面周长=3πcm,
∴圆锥的侧面积=×3π×3=4.5πcm2,
故选A.
【点睛】
此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.
8、A
【解析】
试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.
由题意海里,海里,
在中,
所以
在中,
所以
所以
解得:
故选A.
9、C
【解析】
由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.
【详解】
解:∵AB与⊙O相切于点A,
∴OA⊥BA.
∴∠OAB=90°.
∵∠CDA=27°,
∴∠BOA=54°.
∴∠B=90°-54°=36°.
故选C.
考点:切线的性质.
10、D
【解析】
根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.
【详解】
解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,
∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;
B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),
∴妈妈比小亮提前0.5小时到达姥姥家,故正确;
C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,
∴小亮走的路程为:1×12=12km,
∴妈妈在距家12km出追上小亮,故正确;
D、由图象可知,当t=9时,妈妈追上小亮,故错误;
故选D.
【点睛】
本题考查函数图像的应用,从图像中读取关键信息是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1≤x≤1
【解析】
此题需要运用极端原理求解;①BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;
【详解】
解:如图:①当F、D重合时,BP的值最小;
根据折叠的性质知:AF=PF=5;
在Rt△PFC中,PF=5,FC=1,则PC=4;
∴BP=xmin=1;
②当E、B重合时,BP的值最大;
由折叠的性质可得BP=AB=1.
所以BP的取值范围是:1≤x≤1.
故答案为:1≤x≤1.
【点睛】
此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.
12、
【解析】
根据cos∠AMC ,设, ,由勾股定理求出AC的长度,根据中线表达出BC即可求解.
【详解】
解:∵cos∠AMC ,
,
设, ,
∴在Rt△ACM中,
∵AM 是 BC 边上的中线,
∴BM=MC=3x,
∴BC=6x,
∴在Rt△ABC中,,
故答案为:.
【点睛】
本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.
13、
【解析】
分析:根据题目中所给定义先求,再利用根与系数关系求m值.
详解:由所给定义知,,若
=0,
解得m=.
点睛:一元二次方程的根的判别式是,
△=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.
△>0说明方程有两个不同实数解,
△=0说明方程有两个相等实数解,
△
相关试卷
这是一份福建省泉州台商投资区2023-2024学年九年级上学期期中数学试题(原卷版+解析版),文件包含精品解析福建省泉州台商投资区2023-2024学年九年级上学期期中数学试题原卷版docx、精品解析福建省泉州台商投资区2023-2024学年九年级上学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份2022-2023学年福建省泉州市台商投资区九年级(上)期中数学试卷(含解析),共21页。试卷主要包含了【答案】A,【答案】D,【答案】B,【答案】C等内容,欢迎下载使用。
这是一份福建省泉州台商投资区五校联考2022年中考数学五模试卷含解析