2022年福建省龙岩市第五中学毕业升学考试模拟卷数学卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列计算正确的是( )
A.a6÷a2=a3 B.(﹣2)﹣1=2
C.(﹣3x2)•2x3=﹣6x6 D.(π﹣3)0=1
2.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )
A.①② B.①③ C.②③ D.①②③
3.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )
A. B. C. D.
4.在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是( )
A.﹣3 B.0 C. D.﹣1
5.下列运算结果正确的是( )
A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
6.如图,一次函数y=x﹣1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为( )
A.(0,1) B.(0,2) C. D.(0,3)
7.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是
A. B. C. D.
8.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )
A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”
B.从一副扑克牌中任意抽取一张,这张牌是“红色的”
C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”
D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6
9.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
A.2.8×103 B.28×103 C.2.8×104 D.0.28×105
10.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.
12.如图,已知的半径为2,内接于,,则__________.
13.计算的结果为_____.
14.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.
15.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.
16.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.
三、解答题(共8题,共72分)
17.(8分)已知反比例函数的图象过点A(3,2).
(1)试求该反比例函数的表达式;
(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴,交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.
18.(8分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.
19.(8分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为_____.
20.(8分)解不等式组并写出它的所有整数解.
21.(8分)计算:2﹣1+|﹣|++2cos30°
22.(10分)如图,是的直径,是圆上一点,弦于点,且.过点作的切线,过点作的平行线,两直线交于点,的延长线交的延长线于点.
(1)求证:与相切;
(2)连接,求的值.
23.(12分)如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE=AB,连接DE,AC
(1)求证:四边形ACDE为平行四边形;
(2)连接CE交AD于点O,若AC=AB=3,cosB=,求线段CE的长.
24.如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数 (x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
解:A.a6÷a2=a4,故A错误;
B.(﹣2)﹣1=﹣,故B错误;
C.(﹣3x2)•2x3=﹣6x5,故C错;
D.(π﹣3)0=1,故D正确.
故选D.
2、B
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
①对从某国进口的香蕉进行检验检疫适合抽样调查;
②审查某教科书稿适合全面调查;
③中央电视台“鸡年春晚”收视率适合抽样调查.
故选B.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、A
【解析】
观察所给的几何体,根据三视图的定义即可解答.
【详解】
左视图有2列,每列小正方形数目分别为2,1.
故选A.
【点睛】
本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
4、B
【解析】
|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,
∵3>2>>1>0,
∴绝对值最小的数是0,
故选:B.
5、C
【解析】
根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
【详解】
A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
B、(-a2)•a3=-a5,此选项计算错误;
C、(-2x2)3=-8x6,此选项计算正确;
D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
故选:C.
【点睛】
本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
6、B
【解析】
根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.
【详解】
由,解得 或,
∴A(2,1),B(1,0),
设C(0,m),
∵BC=AC,
∴AC2=BC2,
即4+(m-1)2=1+m2,
∴m=2,
故答案为(0,2).
【点睛】
本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.
7、A
【解析】
根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.
【详解】
根据x的不等式x-b>0恰有两个负整数解,可得x的负整数解为-1和-2
综合上述可得
故选A.
【点睛】
本题主要考查不等式的非整数解,关键在于非整数解的确定.
8、D
【解析】
根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.
【详解】
根据图中信息,某种结果出现的频率约为0.16,
在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,
从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,
掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,
掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,
故选D.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
9、C
【解析】
试题分析:28000=1.1×1.故选C.
考点:科学记数法—表示较大的数.
10、A
【解析】
根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.
【详解】
设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
根据题意列方程为:.
故选:.
【点睛】
本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、5
【解析】
本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.
【详解】
解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.
连接OC,交AB于D点.连接OA.
∵尺的对边平行,光盘与外边缘相切,
∴OC⊥AB.
∴AD=4cm.
设半径为Rcm,则R2=42+(R-2)2,
解得R=5,
∴该光盘的半径是5cm.
故答案为5
【点睛】
此题考查了切线的性质及垂径定理,建立数学模型是关键.
12、
【解析】
分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.
详解:连接AD、AE、OA、OB,
∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,
∴∠ADB=45°,
∴∠AOB=90°,
∵OA=OB=2,
∴AB=2,
故答案为:2.
点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
13、﹣2
【解析】
根据分式的运算法则即可得解.
【详解】
原式===,
故答案为:.
【点睛】
本题主要考查了同分母的分式减法,熟练掌握相关计算法则是解决本题的关键.
14、132°
【解析】
解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.
15、20
【解析】
利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.
【详解】
设原来红球个数为x个,
则有=,
解得,x=20,
经检验x=20是原方程的根.
故答案为20.
【点睛】
本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.
16、2
【解析】
要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为6cm,圆柱高为2cm,
∴AB=2cm,BC=BC′=3cm,
∴AC2=22+32=13,
∴AC=cm,
∴这圈金属丝的周长最小为2AC=2cm.
故答案为2.
【点睛】
本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.
三、解答题(共8题,共72分)
17、(1);(2)MB=MD.
【解析】
(1)将A(3,2)分别代入y= ,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;
(2)有S△OMB=S△OAC=×=3 ,可得矩形OBDC的面积为12;即OC×OB=12 ;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.
【详解】
(1)将A(3,2)代入中,得2,∴k=6,
∴反比例函数的表达式为.
(2)BM=DM,理由:∵S△OMB=S△OAC=×=3,
∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,
即OC·OB=12,
∵OC=3,∴OB=4,即n=4,∴,
∴MB=,MD=,∴MB=MD.
【点睛】
本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.
18、见解析
【解析】
由菱形的性质可得,,然后根据角角边判定,进而得到.
【详解】
证明:∵菱形ABCD,
∴,,
∵,,
∴,
在与中,
,
∴,
∴.
【点睛】
本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.
19、11
【解析】
将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.
【详解】
将x=2代入方程,得:1﹣1m+3m=0,
解得:m=1.
当m=1时,原方程为x2﹣8x+12=(x﹣2)(x﹣6)=0,
解得:x1=2,x2=6,
∵2+2=1<6,
∴此等腰三角形的三边为6、6、2,
∴此等腰三角形的周长C=6+6+2=11.
【点睛】
考点:根与系数的关系;一元二次方程的解;等腰三角形的性质
20、不等式组的整数解有﹣1、0、1.
【解析】
先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.
【详解】
,
解不等式①可得,x>-2;
解不等式②可得,x≤1;
∴不等式组的解集为:﹣2<x≤1,
∴不等式组的整数解有﹣1、0、1.
【点睛】
本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.
21、+4.
【解析】
原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.
【详解】
原式=++2+2×=+4.
【点睛】
本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.
22、(1)见解析;(2)
【解析】
(1)连接,,易证为等边三角形,可得,由等腰三角形的性质及角的和差关系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得与相切;(2)作于点.设,则,.根据两组对边互相平行可证明四边形为平行四边形,由可证四边形为菱形,由(1)得,从而可求出、的值,从而可知的长度,利用锐角三角函数的定义即可求出的值.
【详解】
(1)连接,.
∵是的直径,弦于点,
∴,.
∵,
∴.
∴为等边三角形.
∴,∠DAE=∠EAC=30°,
∵OA=OC,
∴∠OAC=∠OCA=30°,
∴∠1=∠DCA-∠OCA=30°,
∵,
∴∠DCG=∠CDA=∠60°,
∴∠OCG=∠DCG+∠1=60°+30°=90°,
∴.
∴与相切.
(2)连接EF,作于点.
设,则,.
∵与相切,
∴.
又∵,
∴.
又∵,
∴四边形为平行四边形.
∵,
∴四边形为菱形.
∴,.
由(1)得,
∴,.
∴.
∵在中,,
∴.
【点睛】
本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.
23、(1)证明见解析;(2)4.
【解析】
(1)已知四边形 ABCD 是平行四边形,根据平行四边形的性质可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根据一组对边平行且相等的四边形是平行四边形即可判定四边形 ACDE 是平行四边形;(2)连接 EC,易证△BEC 是直角三角形,解直角三角形即可解决问题.
【详解】
(1)证明:∵四边形 ABCD 是平行四边形,
∴AB∥CD,AB=CD,
∵AE=AB,
∴AE=CD,∵AE∥CD,
∴四边形 ACDE 是平行四边形.
(2)如图,连接 EC.
∵AC=AB=AE,
∴△EBC 是直角三角形,
∵cosB==,BE=6,
∴BC=2,
∴EC===4.
【点睛】
本题考查平行四边形的性质和判定、直角三角形的判定、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
24、(1)-6;(2).
【解析】
(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;
(2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.
【详解】
解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上,
∴,解得:;
(2)由(1)知反比例函数解析式为,∵n=3,∴点B(﹣2,3)、D(﹣6,1),
如图,过点D作DE⊥BC于点E,延长DE交AB于点F,
在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,
∴△DBE≌△FBE(ASA),∴DE=FE=4,
∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,
∴,解得:,
∴.
【点睛】
本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长.
2022年那曲市重点中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年那曲市重点中学毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了答题时请按要求用笔,若=1,则符合条件的m有等内容,欢迎下载使用。
2022年福建省厦门重点中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年福建省厦门重点中学毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了答题时请按要求用笔,在同一平面内,下列说法,下列图标中,是中心对称图形的是等内容,欢迎下载使用。
2022年保山市重点中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年保山市重点中学毕业升学考试模拟卷数学卷含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在中,,,,则等于等内容,欢迎下载使用。