2022年甘肃省高台县中考一模数学试题含解析
展开这是一份2022年甘肃省高台县中考一模数学试题含解析,共19页。试卷主要包含了已知点A,已知等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列四个多项式,能因式分解的是( )
A.a-1 B.a2+1
C.x2-4y D.x2-6x+9
2.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中,,,,则等于
A. B. C. D.
3.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为( )
A.85° B.75° C.60° D.30°
4.用配方法解下列方程时,配方有错误的是( )
A.化为 B.化为
C.化为 D.化为
5.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是( )
A. B. C. D.2
6.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )
A.该班总人数为50 B.步行人数为30
C.乘车人数是骑车人数的2.5倍 D.骑车人数占20%
7.如图,为的直径,为上两点,若,则的大小为( ).
A.60° B.50° C.40° D.20°
8.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是( )
A. B. C. D.
9.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:
x
…
–2
–1
0
1
2
…
y
…
0
4
6
6
4
…
从上表可知,下列说法错误的是
A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)
C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的
10.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为( )
A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3
C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.当﹣4≤x≤2时,函数y=﹣(x+3)2+2的取值范围为_____________.
12.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)
13.已知,则______
14.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为_____.
15.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .
16.________.
三、解答题(共8题,共72分)
17.(8分)列方程解应用题:
某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.
18.(8分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
19.(8分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.
20.(8分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.
如图1,当点E在边BC上时,求证DE=EB;如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.
21.(8分)已知关于x的一元二次方程有实数根.
(1)求k的取值范围;
(2)若k为正整数,且方程有两个非零的整数根,求k的取值.
22.(10分)化简求值:,其中.
23.(12分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?
24.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ;
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;
(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
试题解析:x2-6x+9=(x-3)2.
故选D.
考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
2、C
【解析】
根据三角形的内角和定理和三角形外角性质进行解答即可.
【详解】
如图:
,,
,,
∴
=
=,
故选C.
【点睛】
本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.
3、B
【解析】
分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
详解:∵AB∥CD,
∴∠C=∠ABC=30°,
又∵CD=CE,
∴∠D=∠CED,
∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
∴∠D=75°.
故选B.
点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.
4、B
【解析】
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
【详解】
解:、,,,,故选项正确.
、,,,,故选项错误.
、,,,,,故选项正确.
、,,,,.故选项正确.
故选:.
【点睛】
此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
5、B
【解析】
首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可.
【详解】
AB的中点D的坐标是(4,-2),
∵C(a,-a)在一次函数y=-x上,
∴设过D且与直线y=-x垂直的直线的解析式是y=x+b,
把(4,-2)代入解析式得:4+b=-2,
解得:b=-1,
则函数解析式是y=x-1.
根据题意得:,
解得:,
则交点的坐标是(3,-3).
则这个圆的半径的最小值是:=.
故选:B
【点睛】
本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键.
6、B
【解析】
根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.
【详解】
A、总人数是:25÷50%=50(人),故A正确;
B、步行的人数是:50×30%=15(人),故B错误;
C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;
D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.
由于该题选择错误的,
故选B.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
7、B
【解析】
根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.
【详解】
解:连接,
∵为的直径,
∴.
∵,
∴,
∴.
故选:B.
【点睛】
本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.
8、A
【解析】
由题意可得:△APE和△PCF都是等腰直角三角形.
∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.
则y=2x,为正比例函数.
故选A.
9、C
【解析】
当x=-2时,y=0,
∴抛物线过(-2,0),
∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;
当x=0时,y=6,
∴抛物线与y轴的交点坐标为(0,6),故B正确;
当x=0和x=1时,y=6,
∴对称轴为x=,故C错误;
当x<时,y随x的增大而增大,
∴抛物线在对称轴左侧部分是上升的,故D正确;
故选C.
10、A
【解析】
试题分析:0.001219=1.219×10﹣1.故选A.
考点:科学记数法—表示较小的数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、-23≤y≤2
【解析】
先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4≤x≤2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论.
【详解】
解:∵a=-1,
∴抛物线的开口向下,故有最大值,
∵对称轴x=-3,
∴当x=-3时y最大为2,
当x=2时y最小为-23,
∴函数y的取值范围为-23≤y≤2,
故答案为:-23≤y≤2.
【点睛】
本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键.
12、6.2
【解析】
根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.
【详解】
解:在Rt△ABC中,
∵∠ACB=90°,
∴BC=AB•sin∠BAC=12×0.515≈6.2(米),
答:大厅两层之间的距离BC的长约为6.2米.
故答案为:6.2.
【点睛】
本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.
13、34
【解析】
∵,∴=,
故答案为34.
14、1
【解析】
根据平均数的定义计算即可.
【详解】
解:
故答案为1.
【点睛】
本题主要考查平均数的求法,掌握平均数的公式是解题的关键.
15、300π
【解析】
试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.∵底面圆的面积为100π, ∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r, 则=20π, 解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π
考点:(1)、圆锥的计算;(2)、扇形面积的计算
16、1
【解析】
先将二次根式化为最简,然后再进行二次根式的乘法运算即可.
【详解】
解:原式=2×=1.
故答案为1.
【点睛】
本题考查了二次根式的乘法运算,属于基础题,掌握运算法则是关键.
三、解答题(共8题,共72分)
17、2.4元/米
【解析】
利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.
【详解】
解:设去年用水的价格每立方米元,则今年用水价格为每立方米元
由题意列方程得:
解得
经检验,是原方程的解
(元/立方米)
答:今年居民用水的价格为每立方米元.
【点睛】
此题主要考查了分式方程的应用,正确表示出用水量是解题关键.
18、(1)证明见解析(2)
【解析】
试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
试题解析:(1)证明:因为四边形ABCD是矩形,
所以AD∥BC,
所以∠PDO=∠QBO,
又因为O为BD的中点,
所以OB=OD,
在△POD与△QOB中,
∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
所以△POD≌△QOB,
所以OP=OQ.
(2)解:PD=8-t,
因为四边形PBQD是菱形,
所以PD=BP=8-t,
因为四边形ABCD是矩形,
所以∠A=90°,
在Rt△ABP中,
由勾股定理得:,
即,
解得:t=,
即运动时间为秒时,四边形PBQD是菱形.
考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
19、甲建筑物的高度约为,乙建筑物的高度约为.
【解析】
分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.
详解:如图,过点作,垂足为.
则.
由题意可知,,,,,.
可得四边形为矩形.
∴,.
在中,,
∴.
在中,,
∴.
∴ .
∴.
答:甲建筑物的高度约为,乙建筑物的高度约为.
点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.
20、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.
【解析】
(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;
(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;
(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.
【详解】
(1)∵△CDE是等边三角形,
∴∠CED=60°,
∴∠EDB=60°﹣∠B=10°,
∴∠EDB=∠B,
∴DE=EB;
(2) ED=EB, 理由如下:
取AB的中点O,连接CO、EO,
∵∠ACB=90°,∠ABC=10°,
∴∠A=60°,OC=OA,
∴△ACO为等边三角形,
∴CA=CO,
∵△CDE是等边三角形,
∴∠ACD=∠OCE,
∴△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,
∴△COE≌△BOE,
∴EC=EB,
∴ED=EB;
(1)、取AB的中点O,连接CO、EO、EB, 由(2)得△ACD≌△OCE,
∴∠COE=∠A=60°,
∴∠BOE=60°,△COE≌△BOE,
∴EC=EB,
∴ED=EB,
∵EH⊥AB,
∴DH=BH=1,
∵GE∥AB,
∴∠G=180°﹣∠A=120°,
∴△CEG≌△DCO,
∴CG=OD,
设CG=a,则AG=5a,OD=a,
∴AC=OC=4a,
∵OC=OB,
∴4a=a+1+1,
解得,a=2,
即CG=2.
21、(1);(2)k=1
【解析】
(1)根据一元二次方程2x2+4x+k﹣1=0有实数根,可得出△≥0,解不等式即可得出结论;
(2)分别把k的正整数值代入方程2x2+4x+k﹣1=0,根据解方程的结果进行分析解答.
【详解】
(1)由题意得:△=16﹣8(k﹣1)≥0,∴k≤1.
(2)∵k为正整数,∴k=1,2,1.
当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x =0,解得:x=0或x=-2,有一个根为零;
当k=2时,方程2x2+4x+k﹣1=0变为:2x2+4x +1=0,解得:x=,无整数根;
当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x +2=0,解得:x1=x2=-1,有两个非零的整数根.
综上所述:k=1.
【点睛】
本题考查了一元二次方程根的判别式:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(1)△<0⇔方程没有实数根.
22、
【解析】
分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
详解:原式
当时,
点睛:考查分式的混合运算,掌握运算顺序是解题的关键.
23、(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元.
【解析】
整体分析:
(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.
解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,
由题意得,,
解得:
答:购买一副乒乓球拍28元,一副羽毛球拍60元.
(2)5×28+3×60=320元
答:购买5副乒乓球拍和3副羽毛球拍共320元.
24、 (1)PM=PN, PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3).
【解析】
(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;
(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.
方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.
【详解】
解:(1)∵点P,N是BC,CD的中点,
∴PN∥BD,PN=BD,
∵点P,M是CD,DE的中点,
∴PM∥CE,PM=CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∵PN∥BD,
∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN,
故答案为:PM=PN,PM⊥PN,
(2)由旋转知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,
同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,
∴PM=PN,
∴△PMN是等腰三角形,
同(1)的方法得,PM∥CE,
∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD,
∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形,
(3)方法1、如图2,同(2)的方法得,△PMN是等腰直角三角形,
∴MN最大时,△PMN的面积最大,
∴DE∥BC且DE在顶点A上面,
∴MN最大=AM+AN,
连接AM,AN,
在△ADE中,AD=AE=4,∠DAE=90°,
∴AM=2,
在Rt△ABC中,AB=AC=10,AN=5,
∴MN最大=2+5=7,
∴S△PMN最大=PM2=×MN2=×(7)2=.
方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,
∴PM最大时,△PMN面积最大,
∴点D在BA的延长线上,
∴BD=AB+AD=14,
∴PM=7,
∴S△PMN最大=PM2=×72=
【点睛】
本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.
相关试卷
这是一份甘肃省张掖市高台县2021-2022学年中考冲刺卷数学试题含解析,共19页。
这是一份2022年甘肃省张掖市高台县中考数学对点突破模拟试卷含解析,共22页。试卷主要包含了正比例函数y=,下列运算正确的是等内容,欢迎下载使用。
这是一份2022年甘肃省高台县重点达标名校中考猜题数学试卷含解析,共19页。试卷主要包含了如图,下列算式的运算结果正确的是等内容,欢迎下载使用。