|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年福建省泉州市第五中学中考数学模拟预测试卷含解析
    立即下载
    加入资料篮
    2022年福建省泉州市第五中学中考数学模拟预测试卷含解析01
    2022年福建省泉州市第五中学中考数学模拟预测试卷含解析02
    2022年福建省泉州市第五中学中考数学模拟预测试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年福建省泉州市第五中学中考数学模拟预测试卷含解析

    展开
    这是一份2022年福建省泉州市第五中学中考数学模拟预测试卷含解析,共21页。试卷主要包含了下列说法中,正确的是,下列计算正确的是,济南市某天的气温等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.不等式组的正整数解的个数是(  )
    A.5 B.4 C.3 D.2
    2.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为(  )

    A.(﹣) B.(﹣) C.(﹣) D.(﹣)
    3.下列说法中,正确的是(  )
    A.长度相等的弧是等弧
    B.平分弦的直径垂直于弦,并且平分弦所对的两条弧
    C.经过半径并且垂直于这条半径的直线是圆的切线
    D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径
    4.如图,△ABC是⊙O的内接三角形,∠BOC=120°,则∠A等于(  )

    A.50° B.60° C.55° D.65°
    5.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )

    A.6个 B.7个 C.8个 D.9个
    6.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为(  )

    A. B. C.4 D.2+
    7.下列计算正确的是(  )
    A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2﹣a2=2
    8.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )

    A.线段DB绕点D顺时针旋转一定能与线段DC重合
    B.线段DB绕点D顺时针旋转一定能与线段DI熏合
    C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
    D.线段ID绕点I顺时针旋转一定能与线段IB重合
    9.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )

    A.AB=AD B.AC平分∠BCD
    C.AB=BD D.△BEC≌△DEC
    10.济南市某天的气温:-5~8℃,则当天最高与最低的温差为( )
    A.13 B.3 C.-13 D.-3
    二、填空题(共7小题,每小题3分,满分21分)
    11.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.
    12.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.

    13.如图,直线a、b相交于点O,若∠1=30°,则∠2=___

    14.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.

    15.如图,已知,第一象限内的点A在反比例函数y=的图象上,第四象限内的点B在反比例函数y=的图象上.且OA⊥OB,∠OAB=60°,则k的值为_________.

    16.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 .

    17.函数中,自变量x的取值范围是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
    19.(5分)问题探究
    (1)如图1,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求的值;
    (2)如图2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,点P是射线AM上一动点,连接CP,做CQ⊥CP交线段AB于点Q,连接PQ,求PQ的最小值;

    (3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值.

    图3
    20.(8分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
    (1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
    (2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
    (3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.

    21.(10分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台. 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.
    22.(10分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.

    23.(12分) 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.
    (1)求抛物线的解析式;
    (2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
    (3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

    24.(14分)菱形的边长为5,两条对角线、相交于点,且,的长分别是关于的方程的两根,求的值.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    先解不等式组得到-1<x≤3,再找出此范围内的正整数.
    【详解】
    解不等式1-2x<3,得:x>-1,
    解不等式≤2,得:x≤3,
    则不等式组的解集为-1<x≤3,
    所以不等式组的正整数解有1、2、3这3个,
    故选C.
    【点睛】
    本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.
    2、A
    【解析】
    直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
    【详解】
    过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,

    由题意可得:∠C1NO=∠A1MO=90°,
    ∠1=∠2=∠1,
    则△A1OM∽△OC1N,
    ∵OA=5,OC=1,
    ∴OA1=5,A1M=1,
    ∴OM=4,
    ∴设NO=1x,则NC1=4x,OC1=1,
    则(1x)2+(4x)2=9,
    解得:x=±(负数舍去),
    则NO=,NC1=,
    故点C的对应点C1的坐标为:(-,).
    故选A.
    【点睛】
    此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
    3、D
    【解析】
    根据切线的判定,圆的知识,可得答案.
    【详解】
    解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;
    B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;
    C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;
    D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;
    故选:D.
    【点睛】
    本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.
    4、B
    【解析】
    由圆周角定理即可解答.
    【详解】
    ∵△ABC是⊙O的内接三角形,
    ∴∠A= ∠BOC,
    而∠BOC=120°,
    ∴∠A=60°.
    故选B.
    【点睛】
    本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.
    5、A
    【解析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
    【详解】
    如图:分情况讨论:

    ①AB为等腰直角△ABC底边时,符合条件的C点有2个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
    故选:C.
    【点睛】
    本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
    6、B
    【解析】
    根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
    【详解】
    如图:

    BC=AB=AC=1,
    ∠BCB′=120°,
    ∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.
    7、B
    【解析】
    根据整式的加减乘除乘方运算法则逐一运算即可。
    【详解】
    A. ,故A选项错误。
    B. ,故B选项正确。
    C.,故C选项错误。
    D. ,故D选项错误。
    故答案选B.
    【点睛】
    本题考查整式加减乘除运算法则,只需熟记法则与公式即可。
    8、D
    【解析】
    解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正确,不符合题意;
    ∴=,∴BD=CD,故A正确,不符合题意;
    ∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意.
    故选D.
    点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.
    9、C
    【解析】
    解:∵AC垂直平分BD,∴AB=AD,BC=CD,
    ∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.
    在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,
    ∴Rt△BCE≌Rt△DCE(HL).
    ∴选项ABD都一定成立.
    故选C.
    10、A
    【解析】
    由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.

    二、填空题(共7小题,每小题3分,满分21分)
    11、m>1
    【解析】
    ∵反比例函数的图象在其每个象限内,y随x的增大而减小,
    ∴>0,
    解得:m>1,
    故答案为m>1.
    12、2.
    【解析】
    设第n层有an个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an=2n﹣2”,再代入n=2029即可求出结论.
    【详解】
    设第n层有an个三角形(n为正整数),
    ∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,
    ∴an=2(n﹣2)+2=2n﹣2.
    ∴当n=2029时,a2029=2×2029﹣2=2.
    故答案为2.
    【点睛】
    本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an=2n﹣2”是解题的关键.
    13、30°
    【解析】
    因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.
    解:∵∠1+∠2=180°,
    又∠1=30°,
    ∴∠2=150°.
    14、(0,).
    【解析】
    试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,).
    考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.
    15、-6
    【解析】
    如图,作AC⊥x轴,BD⊥x轴,
    ∵OA⊥OB,
    ∴∠AOB=90°,
    ∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,
    ∴∠OAC=∠BOD,
    ∴△ACO∽△ODB,
    ∴,
    ∵∠OAB=60°,
    ∴,
    设A(x,),
    ∴BD=OC=x,OD=AC=,
    ∴B(x,-),
    把点B代入y=得,-=,解得k=-6,
    故答案为-6.

    16、.
    【解析】
    试题分析:此题是求阴影部分的面积占正方形面积的几分之几,即为所求概率.阴影部分的面积为:3×1÷2×4=6,因为正方形对角线形成4个等腰直角三角形,所以边长是=,∴这个点取在阴影部分的概率为:6÷=6÷18=.
    考点:求随机事件的概率.
    17、x>1
    【解析】
    试题分析:二次根号下的数为非负数,二次根式才有意义,故需要满足
    考点:二次根式、分式有意义的条件
    点评:解答本题的关键是熟练掌握二次根号下的数为非负数,二次根式才有意义;分式的分母不能为0,分式才有意义.

    三、解答题(共7小题,满分69分)
    18、(1)y=﹣20x+1600;
    (2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
    (3)超市每天至少销售粽子440盒.
    【解析】
    试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
    (2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;
    (3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.
    试题解析:(1)由题意得,==;
    (2)P===,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
    (3)由题意,得=6000,解得,,∵抛物线P=的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.
    考点:二次函数的应用.
    19、(1);(2);(3)+.
    【解析】
    (1)由等腰直角三角形的性质可得BC=3,CE=,∠ACB=∠DCE=45°,可证△ACD∽△BCE,可得=;
    (2)由题意可证点A,点Q,点C,点P四点共圆,可得∠QAC=∠QPC,可证△ABC∽△PQC,可得,可得当QC⊥AB时,PQ的值最小,即可求PQ的最小值;
    (3)作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证△ABC∽△DEC,可得,且∠BCE=∠ACD,可证△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值.
    【详解】
    (1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,
    ∴BC=3,CE=,∠ACB=∠DCE=45°,
    ∴∠BCE=∠ACD,
    ∵==,=,
    ∴=,∠BCE=∠ACD,
    ∴△ACD∽△BCE,
    ∴=;
    (2)∵∠ACB=90°,∠B=30°,BC=4,
    ∴AC=,AB=2AC=,
    ∵∠QAP=∠QCP=90°,
    ∴点A,点Q,点C,点P四点共圆,
    ∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,
    ∴△ABC∽△PQC,
    ∴,
    ∴PQ=×QC=QC,
    ∴当QC的长度最小时,PQ的长度最小,
    即当QC⊥AB时,PQ的值最小,
    此时QC=2,PQ的最小值为;
    (3)如图,作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,

    ∵∠ADC=90°,AD=CD,
    ∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,
    ∴△ABC∽△DEC,
    ∴,
    ∵∠DCE=∠ACB,
    ∴∠BCE=∠ACD,
    ∴△BCE∽△ACD,
    ∴∠BEC=∠ADC=90°,
    ∴CE=BC=2,
    ∵点F是EC中点,
    ∴DF=EF=CE=,
    ∴BF==,
    ∴BD≤DF+BF=+
    【点睛】
    本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键.
    20、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).
    【解析】
    (1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;
    (2)根据点B的坐标画出平面直角坐标系;
    (3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.
    【详解】
    (1)△A如图所示;
    (2)如图所示,A(0,1),C(﹣3,1);
    (3)△如图所示,(3,﹣5),(3,﹣1).

    21、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元
    【解析】
    (1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价÷单价可得出关于x的分式方程,解之并检验后即可得出结论;
    (2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润×购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题.
    【详解】
    (1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,
    由题意,得 ,
    解得x=1500,
    经检验,x=1500是原分式方程的解,
    乙种品牌空调的进价为(1+20%)×1500=1800(元).
    答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;
    (2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,
    由题意,得1500a+1800(10-a)≤16000,
    解得 ≤a,
    设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,
    因为-700<0,
    则w随a的增大而减少,
    当a=7时,w最大,最大为12100元.
    答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.
    【点睛】
    本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程;(2)根据总利润=单台利润×购进数量找出y关于a的函数关系式.
    22、
    【解析】
    过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,由后坡度AB与前坡度AC相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得.
    【详解】
    解:过A作一条水平线,分别过B,C两点作这条水平线的垂线,垂足分别为D,E,

    ∵房子后坡度AB与前坡度AC相等,
    ∴∠BAD=∠CAE,
    ∵∠BAC=120°,
    ∴∠BAD=∠CAE=30°,
    在直角△ABD中,AB=4米,
    ∴BD=2米,
    在直角△ACE中,AC=6米,
    ∴CE=3米,
    ∴a-b=1米.
    【点睛】
    本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.
    23、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).
    【解析】
    (1)设B(x1,5),由已知条件得 ,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.
    (1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值, 最终得到E点坐标.
    (3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.
    又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP, 得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,
    得n=3或n=﹣2(舍去).求得P点坐标.
    【详解】
    解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x= .

    解得,x1=2.
    ∴B(2,5).
    又∵
    ∴b=.
    ∴抛物线解析式为y= ,
    (1)如图1,

    ∵B(2,5),C(5,1).
    ∴直线BC的解析式为y=﹣x+1.
    由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    ∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.
    由S△CBF=EF•OB,
    ∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.
    又∵S△CDB=BD•OC=×(2﹣)×1=
    ∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.
    化为顶点式得,S四边形CDBF=﹣(m﹣1)1+ .
    当m=1时,S四边形CDBF最大,为.
    此时,E点坐标为(1,1).
    (3)存在.
    如图1,

    由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.
    过N作NO⊥x轴于点P(n,5).
    ∴NP=﹣n1+n+1,PG=n﹣1.
    又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.
    AB1=51=15.
    ∴AC1+BC1=AB1.
    ∴△ABC为直角三角形.
    当△ABC∽△GNP,且时,
    即,
    整理得,n1﹣1n﹣6=5.
    解得,n=1+ 或n=1﹣(舍去).
    此时P点坐标为(1+,5).
    当△ABC∽△GNP,且时,
    即,
    整理得,n1+n﹣11=5.
    解得,n=3或n=﹣2(舍去).
    此时P点坐标为(3,5).
    综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).
    【点睛】
    本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.
    24、.
    【解析】
    由题意可知:菱形ABCD的边长是5,则AO2+BO2=25,则再根据根与系数的关系可得:AO+BO=−(2m−1),AO∙BO=m2+3;代入AO2+BO2中,得到关于m的方程后,即可求得m的值.
    【详解】
    解:∵,的长分别是关于的方程的两根,
    设方程的两根为和,可令,,
    ∵四边形是菱形,
    ∴,
    在中:由勾股定理得:,
    ∴,则,
    由根与系数的关系得:,,
    ∴,
    整理得:,
    解得:,
    又∵,
    ∴,解得,
    ∴.
    【点睛】
    此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.

    相关试卷

    福建省泉州2022年中考数学模拟预测试卷含解析: 这是一份福建省泉州2022年中考数学模拟预测试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中是必然事件的是等内容,欢迎下载使用。

    福建省各地重点中学2021-2022学年中考数学模拟预测试卷含解析: 这是一份福建省各地重点中学2021-2022学年中考数学模拟预测试卷含解析,共24页。试卷主要包含了定义运算“※”为,下列运算正确的是,下列说法中,正确的是等内容,欢迎下载使用。

    2022年福建省泉州市永春第二中学中考数学模拟试题含解析: 这是一份2022年福建省泉州市永春第二中学中考数学模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列图形中一定是相似形的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map