2022年广东省深圳市宝安、罗湖、福田、龙华四区重点达标名校中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知是二元一次方程组的解,则m+3n的值是( )
A.4 B.6 C.7 D.8
2.下列命题中,错误的是( )
A.三角形的两边之和大于第三边
B.三角形的外角和等于360°
C.等边三角形既是轴对称图形,又是中心对称图形
D.三角形的一条中线能将三角形分成面积相等的两部分
3.如图,在中,D、E分别在边AB、AC上,,交AB于F,那么下列比例式中正确的是
A. B. C. D.
4.计算(﹣3)﹣(﹣6)的结果等于( )
A.3 B.﹣3 C.9 D.18
5.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )
A.4cm B.8cm C.(a+4)cm D.(a+8)cm
6.如图是由长方体和圆柱组成的几何体,它的俯视图是( )
A. B. C. D.
7.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( )
A. B. C. D.
8.下列命题正确的是( )
A.内错角相等 B.-1是无理数
C.1的立方根是±1 D.两角及一边对应相等的两个三角形全等
9.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是( )
A.x>﹣2 B.x>0 C.x>1 D.x<1
10.下列各数中,最小的数是( )
A.0 B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.
12.解不等式组
请结合题意填空,完成本题的解答.
(1)解不等式①,得________;
(2)解不等式②,得________;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为___________.
13.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为_____.
14.如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形ABnCnCn-1的面积为________________.
15.在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是 ____ .
16.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.
17.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为_______.
三、解答题(共7小题,满分69分)
18.(10分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.
(1)如图(1)连接PC、CB,求证:∠BCP=∠PED;
(2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=∠F;
(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直径AB.
19.(5分)关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22﹣x1x2=8,求m的值.
20.(8分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
21.(10分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.
(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;
(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;
(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).
22.(10分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C.
(1)如图1,若抛物线经过点A和D(﹣2,0).
①求点C的坐标及该抛物线解析式;
②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围.
23.(12分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.
证明:S矩形ABCD=S1+S2+S3=2,S4= ,S5= ,S6= + ,S阴影=S1+S6=S1+S2+S3= .
24.(14分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(1)求∠BCD的度数.
(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.
详解:根据题意,将代入,得:,
①+②,得:m+3n=8,
故选D.
点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.
2、C
【解析】
根据三角形的性质即可作出判断.
【详解】
解:A、正确,符合三角形三边关系;
B、正确;三角形外角和定理;
C、错误,等边三角形既是轴对称图形,不是中心对称图形;
D、三角形的一条中线能将三角形分成面积相等的两部分,正确.
故选:C.
【点睛】
本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.
3、C
【解析】
根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.
【详解】
A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本选项错误;
B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误;
C、∵EF∥CD,DE∥BC,∴,,∴,故本选项正确;
D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误.
故选C.
【点睛】
本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.
4、A
【解析】
原式=−3+6=3,
故选A
5、B
【解析】
【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.
【详解】∵原正方形的周长为acm,
∴原正方形的边长为cm,
∵将它按图的方式向外等距扩1cm,
∴新正方形的边长为(+2)cm,
则新正方形的周长为4(+2)=a+8(cm),
因此需要增加的长度为a+8﹣a=8cm,
故选B.
【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式.
6、A
【解析】
分析:根据从上边看得到的图形是俯视图,可得答案.
详解:从上边看外面是正方形,里面是没有圆心的圆,
故选A.
点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.
7、C
【解析】
根据反比例函数的图像性质进行判断.
【详解】
解:∵,电压为定值,
∴I关于R的函数是反比例函数,且图象在第一象限,
故选C.
【点睛】
本题考查反比例函数的图像,掌握图像性质是解题关键.
8、D
【解析】解:A.两直线平行,内错角相等,故A错误;
B.-1是有理数,故B错误;
C.1的立方根是1,故C错误;
D.两角及一边对应相等的两个三角形全等,正确.
故选D.
9、C
【解析】
试题分析:当x>1时,x+b>kx+4,
即不等式x+b>kx+4的解集为x>1.
故选C.
考点:一次函数与一元一次不等式.
10、D
【解析】
根据实数大小比较法则判断即可.
【详解】
<0<1<,
故选D.
【点睛】
本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、3
【解析】
试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.
考点:3.等腰三角形的性质;3.垂直平分线的性质.
12、(1)x<1;(2)x≥﹣2;(1)见解析;(4)﹣2≤x<1;
【解析】
(1)先移项,再合并同类项,求出不等式1的解集即可;
(2)先去分母、移项,再合并同类项,求出不等式2的解集即可;
(1)把两不等式的解集在数轴上表示出来即可;
(4)根据数轴上不等式的解集,求出其公共部分即可.
【详解】
(1)解不等式①,得:x<1;
(2)解不等式②,得:x≥﹣2;
(1)把不等式①和②的解集在数轴上表示出来如下:
(4)原不等式组的解集为:﹣2≤x<1,
故答案为:x<1、x≥﹣2、﹣2≤x<1.
【点睛】
本题主要考查一元一次不等式组的解法及在数轴上的表示。
13、
【解析】
如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.
【详解】
解:∵四边形OABC是矩形,
∴OA=BC,AB=OC,tan∠BOC==,
∴AB=2OA,
∵,OB=,
∴OA=2,AB=2.∵OA′由OA翻折得到,
∴OA′= OA=2.
如图,过点A′作A′D⊥x轴与点D;
设A′D=a,OD=b;
∵四边形ABCO为矩形,
∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;
设AB=OC=a,BC=AO=b;
∵OB=,tan∠BOC=,
∴,
解得: ;
由题意得:A′O=AO=2;△ABO≌△A′BO;
由勾股定理得:x2+y2=2①,
由面积公式得:xy+2××2×2=(x+2)×(y+2)②;
联立①②并解得:x=,y=.
故答案为(−,)
【点睛】
该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.
14、或
【解析】
试题分析:AC===,因为矩形都相似,且每相邻两个矩形的相似比=,∴=2×1=2,=,===,
...,==...===.
故答案为.
考点:1.相似多边形的性质;2.勾股定理;3.规律型;4.矩形的性质;5.综合题.
15、
【解析】
【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率.
【详解】袋子中有3个白球和2个红球,一共5个球,
所以从中任意摸出一个球是红球的概率为:,
故答案为.
【点睛】本题考查了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比.
16、1
【解析】
∵MN∥BC,
∴△AMN∽△ABC,
∴,即,
∴MN=1.
故答案为1.
17、65°
【解析】
因为AB∥CD,所以∠BEF=180°-∠1=130°,因为EG平分∠BEF,所以∠BEG=65°,因为AB∥CD,所以∠2=∠BEG=65°.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)见解析;(3)AB=1
【解析】
(1)由垂径定理得出∠CPB=∠BCD,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得证;
(2)连接OP,知OP=OB,先证∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F,据此即可得证;
(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF,先证∠PAE=∠F,由tan∠PAE=tan∠F得,再证∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证∠PEM=∠ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案.
【详解】
证明:(1)∵AB是⊙O的直径且AB⊥CD,
∴∠CPB=∠BCD,
∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,
∴∠BCP=∠PED;
(2)连接OP,则OP=OB,
∴∠OPB=∠OBP,
∵PF是⊙O的切线,
∴OP⊥PF,则∠OPF=90°,
∠FPE=90°﹣∠OPE,
∵∠PEF=∠HEB=90°﹣∠OBP,
∴∠FPE=∠FEP,
∵AB是⊙O的直径,
∴∠APB=90°,
∴∠APG+∠FPE=90°,
∴2∠APG+2∠FPE=180°,
∵∠F+∠FPE+∠PEF=180°,
∵∠F+2∠FPE=180°
∴2∠APG=∠F,
∴∠APG= ∠F;
(3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,
由(2)知∠APB=∠AHE=90°,
∵AN=EN,
∴A、H、E、P四点共圆,
∴∠PAE=∠PHF,
∵PH=PF,
∴∠PHF=∠F,
∴∠PAE=∠F,
tan∠PAE=tan∠F,
∴,
由(2)知∠APB=∠G=∠PME=90°,
∴∠GAP=∠MPE,
∴sin∠GAP=sin∠MPE,
则,
∴,
∴MF=GP,
∵3PF=5PG,
∴,
设PG=3k,则PF=5k,MF=PG=3k,PM=2k
由(2)知∠FPE=∠PEF,
∴PF=EF=5k,
则EM=4k,
∴tan∠PEM=,tan∠F=,
∴tan∠PAE=,
∵PE=,
∴AP=k,
∵∠APG+∠EPM=∠EPM+∠PEM=90°,
∴∠APG=∠PEM,
∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,
∴∠APG=∠ABP,
∴∠PEM=∠ABP,
则tan∠ABP=tan∠PEM,即,
∴,
则BP=3k,
∴BE=k=2,
则k=2,
∴AP=3、BP=6,
根据勾股定理得,AB=1.
【点睛】
本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.
19、 (1);(2)m=﹣.
【解析】
(1)根据已知和根的判别式得出△=22﹣4×1×2m=4﹣8m>0,求出不等式的解集即可;
(2)根据根与系数的关系得出x1+x2=﹣2,x1•x2=2m,把x1+xx12+x22﹣x1x2=8变形为(x1+x2)2﹣3x1x2=8,代入求出即可.
【详解】
(1)∵关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根,
∴△=22﹣4×1×2m=4﹣8m>0,
解得:
即m的取值范围是
(2)∵x1,x2是一元二次方程x2+2x+2m=0的两个根,
∴x1+x2=﹣2,x1•x2=2m,
∵x12+x22﹣x1x2=8,
∴(x1+x2)2﹣3x1x2=8,
∴(﹣2)2﹣3×2m=8,
解得:
【点睛】
本题考查了根的判别式和根与系数的关系,能熟记根的判别式的内容和根与系数的关系的内容是解此题的关键.
20、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.
【解析】
(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;
(1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.
【详解】
(1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:
,解得.
答:甲种商品的销售单价900元,乙种商品的销售单价600元;
(1)设销售甲种商品a万件,依题意有:
900a+600(8﹣a)≥5400,解得:a≥1.
答:至少销售甲种商品1万件.
【点睛】
本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.
21、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).
【解析】
(1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;
(1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;
(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.
【详解】
(Ⅰ)设OD为x,
∵点A(3,0),点B(0,),
∴AO=3,BO=
∴AB=6
∵折叠
∴BD=DA
在Rt△ADO中,OA1+OD1=DA1.
∴9+OD1=(﹣OD)1.
∴OD=
∴D(0,)
(Ⅱ)∵折叠
∴∠BDC=∠CDO=90°
∴CD∥OA
∴且BD=AC,
∴
∴BD=﹣18
∴OD=﹣(﹣18)=18﹣
∵tan∠ABO=,
∴∠ABC=30°,即∠BAO=60°
∵tan∠ABO=,
∴CD=11﹣6
∴D(11﹣6,11﹣18)
(Ⅲ)如图:过点C作CE⊥AO于E
∵CE⊥AO
∴OE=1,且AO=3
∴AE=1,
∵CE⊥AO,∠CAE=60°
∴∠ACE=30°且CE⊥AO
∴AC=1,CE=
∵BC=AB﹣AC
∴BC=6﹣1=4
若点B'落在A点右边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=1+
∴B'(1+,0)
若点B'落在A点左边,
∵折叠
∴BC=B'C=4,CE=,CE⊥OA
∴B'E=
∴OB'=﹣1
∴B'(1﹣,0)
综上所述:B'(1+,0),(1﹣,0)
【点睛】
本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.
22、(1)①y=﹣x2+x+3;②P( ,)或P'( ,﹣);(2) ≤a<1;
【解析】
(1)①先判断出△AOB≌△GBC,得出点C坐标,进而用待定系数法即可得出结论;②分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)②的方法,借助图象即可得出结论.
【详解】
(1)①如图2,∵A(1,3),B(1,1),
∴OA=3,OB=1,
由旋转知,∠ABC=91°,AB=CB,
∴∠ABO+∠CBE=91°,
过点C作CG⊥OB于G,
∴∠CBG+∠BCG=91°,
∴∠ABO=∠BCG,
∴△AOB≌△GBC,
∴CG=OB=1,BG=OA=3,
∴OG=OB+BG=4
∴C(4,1),
抛物线经过点A(1,3),和D(﹣2,1),
∴,
∴,
∴抛物线解析式为y=﹣x2+x+3;
②由①知,△AOB≌△EBC,
∴∠BAO=∠CBF,
∵∠POB=∠BAO,
∴∠POB=∠CBF,
如图1,OP∥BC,
∵B(1,1),C(4,1),
∴直线BC的解析式为y=x﹣,
∴直线OP的解析式为y=x,
∵抛物线解析式为y=﹣x2+x+3;
联立解得,或(舍)
∴P(,);
在直线OP上取一点M(3,1),
∴点M的对称点M'(3,﹣1),
∴直线OP'的解析式为y=﹣x,
∵抛物线解析式为y=﹣x2+x+3;
联立解得,或(舍),
∴P'(,﹣);
(2)同(1)②的方法,如图3,
∵抛物线y=ax2+bx+c经过点C(4,1),E(2,1),∴,
∴,
∴抛物线y=ax2﹣6ax+8a+1,
令y=1,
∴ax2﹣6ax+8a+1=1,
∴x1×x2=
∵符合条件的Q点恰好有2个,
∴方程ax2﹣6ax+8a+1=1有一个正根和一个负根或一个正根和1,
∴x1×x2=≤1,
∵a<1,
∴8a+1≥1,
∴a≥﹣,
即:﹣≤a<1.
【点睛】
本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.
23、S1,S3,S4,S5,1
【解析】
利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.
【详解】
由题意:S矩形ABCD=S1+S1+S3=1,
S4=S1,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S1+S3=1.
故答案为S1,S3,S4,S5,1.
【点睛】
考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题.
24、(1)38°;(2)20.4m.
【解析】
(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;
(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.
【详解】
(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;
(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.
【点睛】
本题考查了解直角三角形的应用﹣仰角俯角问题,正确添加辅助线构建直角三角形、熟练掌握和灵活运用相关知识是解题的关键.
2023-2024学年广东省深圳市宝安、罗湖、福田、龙华四区数学九年级第一学期期末联考模拟试题含答案: 这是一份2023-2024学年广东省深圳市宝安、罗湖、福田、龙华四区数学九年级第一学期期末联考模拟试题含答案,共8页。试卷主要包含了如图,点P,若点在抛物线上,则的值等内容,欢迎下载使用。
广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年数学八上期末经典模拟试题含答案: 这是一份广东省深圳市宝安、罗湖、福田、龙华四区2023-2024学年数学八上期末经典模拟试题含答案,共6页。试卷主要包含了下列命题是真命题的是,下列二次根式中的最简二次根式是等内容,欢迎下载使用。
2023-2024学年广东省深圳市宝安、罗湖、福田、龙华四区八上数学期末监测模拟试题含答案: 这是一份2023-2024学年广东省深圳市宝安、罗湖、福田、龙华四区八上数学期末监测模拟试题含答案,共7页。试卷主要包含了如图,,则图中全等三角形共有,如图,在中,,,则的度数为,若分式的值为零,则x=,周长38的三角形纸片等内容,欢迎下载使用。