|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年广东省汕头市潮南区博崇实验校中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    2022年广东省汕头市潮南区博崇实验校中考考前最后一卷数学试卷含解析01
    2022年广东省汕头市潮南区博崇实验校中考考前最后一卷数学试卷含解析02
    2022年广东省汕头市潮南区博崇实验校中考考前最后一卷数学试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年广东省汕头市潮南区博崇实验校中考考前最后一卷数学试卷含解析

    展开
    这是一份2022年广东省汕头市潮南区博崇实验校中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是(  )
    A. B. C. D.
    2.下列说法中不正确的是(  )
    A.全等三角形的周长相等 B.全等三角形的面积相等
    C.全等三角形能重合 D.全等三角形一定是等边三角形
    3.已知抛物线y=(x﹣)(x﹣)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是(  )
    A. B. C. D.
    4.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
    ①二次函数的最大值为a+b+c;
    ②a﹣b+c<0;
    ③b2﹣4ac<0;
    ④当y>0时,﹣1<x<3,其中正确的个数是(  )

    A.1 B.2 C.3 D.4
    5.下列所给函数中,y随x的增大而减小的是(  )
    A.y=﹣x﹣1 B.y=2x2(x≥0)
    C. D.y=x+1
    6.下列计算正确的是(  )
    A.x4•x4=x16 B.(a+b)2=a2+b2
    C.=±4 D.(a6)2÷(a4)3=1
    7.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是( )
    A.2 B.-2 C.4 D.-4
    8.如图,为等边三角形,要在外部取一点,使得和全等,下面是两名同学做法:( )
    甲:①作的角平分线;②以为圆心,长为半径画弧,交于点,点即为所求;
    乙:①过点作平行于的直线;②过点作平行于的直线,交于点,点即为所求.

    A.两人都正确 B.两人都错误 C.甲正确,乙错误 D.甲错误,乙正确
    9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程(  )
    A. B.
    C. +4=9 D.
    10.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )

    A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
    C.全班共有50名学生 D.最喜欢田径的人数占总人数的10 %
    二、填空题(共7小题,每小题3分,满分21分)
    11.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 .
    12.函数的自变量的取值范围是 .
    13.ABCD为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动,P、Q两点从出发开始到__________秒时,点P和点Q的距离是10 cm.

    14.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.

    15.如图,已知矩形ABCD中,点E是BC边上的点,BE=2,EC=1,AE=BC,DF⊥AE,垂足为F.则下列结论:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正确的结论是_____.(把正确结论的序号都填上)

    16.已知扇形的弧长为,圆心角为45°,则扇形半径为_____.
    17.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.

    三、解答题(共7小题,满分69分)
    18.(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
    19.(5分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.

    请根据图中提供的信息,回答下列问题:扇形统计图中a的值为 %,该扇形圆心角的度数为 ;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?
    20.(8分)如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.
    (1)若,DC=4,求AB的长;
    (2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.

    21.(10分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.
    (1)求证:△ABE≌△BCN;
    (2)若N为AB的中点,求tan∠ABE.

    22.(10分)解方程组:.
    23.(12分)如图,在中,,平分,交于点,点在上,经过两点,交于点,交于点.
    求证:是的切线;若的半径是,是弧的中点,求阴影部分的面积(结果保留和根号).
    24.(14分)已知,数轴上三个点A、O、P,点O是原点,固定不动,点A和B可以移动,点A表示的数为,点B表示的数为.
    (1)若A、B移动到如图所示位置,计算的值.
    (2)在(1)的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数,并计算.
    (3)在(1)的情况下,点A不动,点B向右移动15.3个单位长,此时比大多少?请列式计算.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,符合题意;
    B、是轴对称图形,不是中心对称图形,不合题意;
    C、不是轴对称图形,也不是中心对称图形,不合题意;
    D、不是轴对称图形,不是中心对称图形,不合题意.
    故选:A.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    2、D
    【解析】
    根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;
    D.错误,全等三角也可能是直角三角,故选项正确.
    故选D.
    【点睛】
    本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.
    3、C
    【解析】
    代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.
    【详解】
    解:当y=0时,有(x-)(x-)=0,
    解得:x1=,x2=,
    ∴MaNa=-,
    ∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.
    故选C.
    【点睛】
    本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键.
    4、B
    【解析】
    分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.
    详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,
    ∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;
    ②当x=﹣1时,a﹣b+c=0,故②错误;
    ③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;
    ④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),
    ∴A(3,0),
    故当y>0时,﹣1<x<3,故④正确.
    故选B.
    点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.
    5、A
    【解析】
    根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.
    【详解】
    解:A.此函数为一次函数,y随x的增大而减小,正确;
    B.此函数为二次函数,当x<0时,y随x的增大而减小,错误;
    C.此函数为反比例函数,在每个象限,y随x的增大而减小,错误;
    D.此函数为一次函数,y随x的增大而增大,错误.
    故选A.
    【点睛】
    本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.
    6、D
    【解析】
    试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加) ;(a+b)2=a2+b2+2ab(完全平方公式) ;(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).
    考点:1、幂的运算;2、完全平方公式;3、算术平方根.
    7、C
    【解析】
    对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.
    即16-4k=0,解得:k=4.
    考点:一元二次方程根的判别式
    8、A
    【解析】
    根据题意先画出相应的图形,然后进行推理论证即可得出结论.
    【详解】
    甲的作法如图一:

    ∵为等边三角形,AD是的角平分线




    由甲的作法可知,

    在和中,

    故甲的作法正确;
    乙的作法如图二:



    在和中,

    故乙的作法正确;
    故选:A.
    【点睛】
    本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.
    9、A
    【解析】
    根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.
    【详解】
    ∵轮船在静水中的速度为x千米/时,
    ∴顺流航行时间为:,逆流航行时间为:,
    ∴可得出方程:,
    故选:A.
    【点睛】
    本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.
    10、C
    【解析】
    【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.
    【详解】观察直方图,由图可知:
    A. 最喜欢足球的人数最多,故A选项错误;
    B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;
    C. 全班共有12+20+8+4+6=50名学生,故C选项正确;
    D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,
    故选C.
    【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、5
    【解析】
    试题分析:中心角的度数=,
    考点:正多边形中心角的概念.
    12、>1
    【解析】
    依题意可得,解得,所以函数的自变量的取值范围是
    13、或
    【解析】
    作PH⊥CD,垂足为H,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.
    【详解】

    设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,
    作PH⊥CD,垂足为H,
    则PH=AD=6,PQ=10,
    ∵DH=PA=3t,CQ=2t,
    ∴HQ=CD−DH−CQ=|16−5t|,
    由勾股定理,得
    解得
    即P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.
    故答案为或.
    【点睛】
    考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ=CD−DH−CQ=|16−5t|是解题的关键.
    14、 .
    【解析】
    延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.
    【详解】
    解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.

    ∵AC=6,CF=1,
    ∴AF=AC-CF=4,
    ∵∠A=60°,∠AMF=90°,
    ∴∠AFM=30°,
    ∴AM=AF=1,
    ∴FM==1 ,
    ∵FP=FC=1,
    ∴PM=MF-PF=1-1,
    ∴点P到边AB距离的最小值是1-1.
    故答案为: 1-1.
    【点睛】
    本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P的位置.
    15、①②
    【解析】
    只要证明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解决问题.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AD=BC,AD∥BC,∠B=90°,
    ∵BE=2,EC=1,
    ∴AE=AD=BC=3,AB==,
    ∵AD∥BC,
    ∴∠DAF=∠AEB,
    ∵DF⊥AE,
    ∴∠AFD=∠B=90°,
    ∴△EAB≌△ADF,
    ∴AF=BE=2,DF=AB=,故①②正确,
    不妨设DF平分∠ADC,则△ADF是等腰直角三角形,这个显然不可能,故③错误,
    ∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,
    ∴∠DAF=∠CDF,
    ∴∠CDF=∠AEB,
    ∴sin∠CDF=sin∠AEB=,故④错误,
    故答案为①②.
    【点睛】
    本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    16、1
    【解析】
    根据弧长公式l=代入求解即可.
    【详解】
    解:∵,
    ∴.
    故答案为1.
    【点睛】
    本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.
    17、(2,0)
    【解析】
    【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.
    【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,
    ∵A(m,﹣3)和点B(﹣1,n),
    ∴OE=1,AF=3,
    ∵∠ACB=45°,
    ∴∠APB=90°,
    ∴∠BPE+∠APF=90°,
    ∵∠BPE+∠EBP=90°,
    ∴∠APF=∠EBP,
    ∵∠BEP=∠AFP=90°,PA=PB,
    ∴△BPE≌△PAF,
    ∴PE=AF=3,
    设P(a,0),
    ∴a+1=3,
    a=2,
    ∴P(2,0),
    故答案为(2,0).

    【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.

    三、解答题(共7小题,满分69分)
    18、(1)2400个, 10天;(2)1人.
    【解析】
    (1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×+2400] ×(10-2)=24000,解得y的值即为原计划安排的工人人数.
    【详解】
    解:(1)解:设原计划每天生产零件x个,由题意得,

    解得x=2400,
    经检验,x=2400是原方程的根,且符合题意.
    ∴规定的天数为24000÷2400=10(天).
    答:原计划每天生产零件2400个,规定的天数是10天.
    (2)设原计划安排的工人人数为y人,由题意得,
    [5×20×(1+20%)×+2400] ×(10-2)=24000,
    解得,y=1.
    经检验,y=1是原方程的根,且符合题意.
    答:原计划安排的工人人数为1人.
    【点睛】
    本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验.
    19、(1)25, 90°;
    (2)见解析;
    (3)该市 “活动时间不少于5天”的大约有1.
    【解析】
    试题分析:(1)根据扇形统计图的特征即可求得的值,再乘以360°即得扇形的圆心角;
    (2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;
    (3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.
    (1)由图可得
    该扇形圆心角的度数为90°;
    (2)“活动时间为6天” 的人数,如图所示:

    (3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1
    ∴该市“活动时间不少于5天”的大约有1人.
    考点:统计的应用
    点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.
    20、(1);(2)30°
    【解析】
    (1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;
    (2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.
    【详解】
    解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,
    ∴∠DEC=90°,AE=EC,
    ∵∠ABC=90°,∠C=∠C,
    ∴∠A=∠CDE,△ABC∽△DEC,
    ∴sin∠CDE=,AB:AC=DE:DC,
    ∵DC=4,
    ∴ED=3,
    ∴DE=,
    ∴AC=6,
    ∴AB:6=:4,
    ∴AB=;
    (2)连接OE,
    ∵∠DEC=90°,
    ∴∠EDC+∠C=90°,
    ∵BE是⊙O的切线,
    ∴∠BEO=90°,
    ∴∠EOB+∠EBC=90°,
    ∵E是AC的中点,∠ABC=90°,
    ∴BE=EC,
    ∴∠EBC=∠C,
    ∴∠EOB=∠EDC,
    又∵OE=OD,
    ∴△DOE是等边三角形,
    ∴∠EDC=60°,
    ∴∠C=30°.

    【点睛】
    考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE,构造直角三角形.
    21、(1)证明见解析;(2)
    【解析】
    (1)根据正方形的性质得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根据垂线和三角形内角和定理得到∠2+∠3=90°,推出∠1=∠3,根据ASA推出△ABE≌△BCN;(2)tan∠ABE=,根据已知求出AE与AB的关系即可求得tan∠ABE.
    【详解】
    (1)证明:∵四边形ABCD为正方形

    ∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°
    ∵CM⊥BE,
    ∴∠2+∠3=90°
    ∴∠1=∠3
    在△ABE和△BCN中,
    ∴△ABE≌△BCN(ASA);
    (2)∵N为AB中点,
    ∴BN=AB
    又∵△ABE≌△BCN,
    ∴AE=BN=AB
    在Rt△ABE中,tan∠ABE═.
    【点睛】
    本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出△ABE≌△BCN是解此题的关键.
    22、;;.
    【解析】
    分析:
    把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.
    详解:
    由方程可得,,;
    则原方程组转化为(Ⅰ)或 (Ⅱ),
    解方程组(Ⅰ)得,
    解方程组(Ⅱ)得 ,
    ∴原方程组的解是 .
    点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.
    23、(1)证明见解析;(2)
    【解析】
    (1)连接OD,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD,即可证明OD//AC,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧弧弧,即可证明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的长,利用S阴影=S△BOD-S扇形DOE即可得答案.
    【详解】
    (1)连接
    ∵平分,
    ∴,
    ∵ ,
    ∴,
    ∴,
    ∴OD//AC,
    ∴,

    又是的半径,
    ∴是的切线
    (2)由题意得
    ∵是弧的中点
    ∴弧弧

    ∴弧弧
    ∴弧弧弧

    在中


    .

    【点睛】
    本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.
    24、(1)a+b的值为2;(2)a的值为3,b|a|的值为3;(1)b比a大27.1.
    【解析】
    (1)根据数轴即可得到a,b数值,即可得出结果.
    (2)由B点不动,点A向左移动1个单位长,
    可得a=3,b=2,即可求解.
    (1)点A不动,点B向右移动15.1个单位长,所以a=10,b=17.1,再b-a即可求解.
    【详解】
    (1)由图可知:a=10,b=2,
    ∴a+b=2
    故a+b的值为2.
    (2)由B点不动,点A向左移动1个单位长,
    可得a=3,b=2
    ∴b|a|=b+a=23=3
    故a的值为3,b|a|的值为3.
    (1)∵点A不动,点B向右移动15.1个单位长
    ∴a=10,b=17.1
    ∴ba=17.1(10)=27.1
    故b比a大27.1.
    【点睛】
    本题主要考查了数轴,关键在于数形结合思想.

    相关试卷

    2023-2024学年广东省汕头市潮南区博崇实验学校数学九年级第一学期期末检测模拟试题含答案: 这是一份2023-2024学年广东省汕头市潮南区博崇实验学校数学九年级第一学期期末检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,在做针尖落地的实验中,正确的是,如图,在中,DE∥BC,,,,,如图等内容,欢迎下载使用。

    广东省汕头市潮南区博崇实验学校2022-2023学年七下数学期末调研模拟试题含答案: 这是一份广东省汕头市潮南区博崇实验学校2022-2023学年七下数学期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在函数中,自变量x的取值范围是等内容,欢迎下载使用。

    广东省汕头市潮阳实验校2022年中考考前最后一卷数学试卷含解析: 这是一份广东省汕头市潮阳实验校2022年中考考前最后一卷数学试卷含解析,共26页。试卷主要包含了把直线l等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map