|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年广东省惠州市龙门县重点达标名校中考数学猜题卷含解析
    立即下载
    加入资料篮
    2022年广东省惠州市龙门县重点达标名校中考数学猜题卷含解析01
    2022年广东省惠州市龙门县重点达标名校中考数学猜题卷含解析02
    2022年广东省惠州市龙门县重点达标名校中考数学猜题卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年广东省惠州市龙门县重点达标名校中考数学猜题卷含解析

    展开
    这是一份2022年广东省惠州市龙门县重点达标名校中考数学猜题卷含解析,共20页。试卷主要包含了剪纸是我国传统的民间艺术,下列说法中,正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:
    阅读时间(小时)
    2
    2.5
    3
    3.5
    4
    学生人数(名)
    1
    2
    8
    6
    3
    则关于这20名学生阅读小时数的说法正确的是( )
    A.众数是8 B.中位数是3
    C.平均数是3 D.方差是0.34
    2.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( )
    A.a<3 B.a>3 C.a<﹣3 D.a>﹣3
    3.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为(  )
    A.1.8×105 B.1.8×104 C.0.18×106 D.18×104
    4.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )

    A.1∶3 B.2∶3 C.∶2 D.∶3
    5.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )
    A. B. C. D.
    6.下列说法中,正确的是(  )
    A.不可能事件发生的概率为0
    B.随机事件发生的概率为
    C.概率很小的事件不可能发生
    D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
    7.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为(  )
    A. B.π C.50 D.50π
    8.如图是一个放置在水平桌面的锥形瓶,它的俯视图是(  )

    A. B. C. D.
    9.圆锥的底面半径为2,母线长为4,则它的侧面积为(  )
    A.8π B.16π  C.4π D.4π
    10.下列大学的校徽图案是轴对称图形的是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.

    12.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.

    13.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了_____小时.

    14.函数y= 中,自变量x的取值范围是 _____.
    15.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为_____人次.
    16.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.

    三、解答题(共8题,共72分)
    17.(8分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

    18.(8分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G
    (1)求证:直线AB是⊙O的切线;
    (2)求证:△GOC∽△GEF;
    (3)若AB=4BD,求sinA的值.

    19.(8分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.
    (1)求∠AEC的度数;
    (2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.

    20.(8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.

    21.(8分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高
    (1)△ACD与△ABC相似吗?为什么?
    (2)AC2=AB•AD 成立吗?为什么?

    22.(10分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.

    23.(12分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.
    (1)求AB的长;
    (2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.

    24.【发现证明】
    如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.
    小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.
    【类比引申】
    (1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;
    【联想拓展】
    (2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    A、根据众数的定义找出出现次数最多的数;B、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.
    【详解】
    解: A、由统计表得:众数为3,不是8,所以此选项不正确;
    B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以此选项正确;
    C、平均数=,所以此选项不正确;
    D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此选项不正确;
    故选B.
    【点睛】
    本题考查方差;加权平均数;中位数;众数.
    2、B
    【解析】
    试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.
    考点:一元二次方程与函数
    3、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    180000=1.8×105,
    故选A.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、A
    【解析】
    ∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
    ∴∠C=∠FDE,
    同理可得:∠B=∠DFE,∠A=DEF,
    ∴△DEF∽△CAB,
    ∴△DEF与△ABC的面积之比= ,
    又∵△ABC为正三角形,
    ∴∠B=∠C=∠A=60°
    ∴△EFD是等边三角形,
    ∴EF=DE=DF,
    又∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴△AEF≌△CDE≌△BFD,
    ∴BF=AE=CD,AF=BD=EC,
    在Rt△DEC中,
    DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
    又∵DC+BD=BC=AC=DC,
    ∴,
    ∴△DEF与△ABC的面积之比等于:
    故选A.
    点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.
    5、A
    【解析】
    试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.
    考点:中心对称图形;轴对称图形.
    6、A
    【解析】
    试题分析:不可能事件发生的概率为0,故A正确;
    随机事件发生的概率为在0到1之间,故B错误;
    概率很小的事件也可能发生,故C错误;
    投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;
    故选A.
    考点:随机事件.
    7、A
    【解析】
    根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解.
    【详解】
    解:圆锥的侧面积=•5•5=.
    故选A.
    【点睛】
    本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
    8、B
    【解析】
    根据俯视图是从上面看到的图形解答即可.
    【详解】
    锥形瓶从上面往下看看到的是两个同心圆.
    故选B.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
    9、A
    【解析】
    解:底面半径为2,底面周长=4π,侧面积=×4π×4=8π,故选A.
    10、B
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项错误;
    B、是轴对称图形,故本选项正确;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2, 0≤x≤2或≤x≤2.
    【解析】
    (2)由图象直接可得答案;
    (2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
    【详解】
    (2)由 函数图象可知,乙比甲晚出发2小时.
    故答案为2.
    (2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
    一是甲出发,乙还未出发时:此时0≤x≤2;
    二是乙追上甲后,直至乙到达终点时:
    设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
    ∴k=5,
    ∴甲的函数解析式为:y=5x①
    设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
    解得 ,
    ∴乙的函数解析式为:y=20x﹣20 ②
    由①②得 ,
    ∴ ,
    故 ≤x≤2符合题意.
    故答案为0≤x≤2或≤x≤2.
    【点睛】
    此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
    12、6
    【解析】
    点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;
    【详解】
    解:点P在以O为圆心OA为半径的圆上,
    ∴P是两个圆的交点,
    当⊙O与⊙M外切时,AB最小,
    ∵⊙M的半径为2,圆心M(3,4),
    ∴PM=5,
    ∴OA=3,
    ∴AB=6,
    故答案为6;
    【点睛】
    本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键.
    13、2.1.
    【解析】
    根据题意和函数图象中的数据可以求得乙车的速度和到达A地时所用的时间,从而可以解答本题.
    【详解】
    由题意可得,
    甲车到达C地用时4个小时,
    乙车的速度为:200÷(3.1﹣1)=80km/h,
    乙车到达A地用时为:(200+240)÷80+1=6.1(小时),
    当乙车到达A地时,甲车已在C地休息了:6.1﹣4=2.1(小时),
    故答案为:2.1.
    【点睛】
    本题考查了一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    14、x≠﹣.
    【解析】
    该函数是分式,分式有意义的条件是分母不等于1,故分母x﹣1≠1,解得x的范围.
    【详解】
    解:根据分式有意义的条件得:2x+3≠1
    解得:
    故答案为
    【点睛】
    本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足分母不等于1.
    15、8.03×106
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.803万=.
    16、(3,2).
    【解析】
    根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.
    【详解】
    解:如图所示:∵A(0,a),
    ∴点A在y轴上,
    ∵C,D的坐标分别是(b,m),(c,m),
    ∴B,E点关于y轴对称,
    ∵B的坐标是:(﹣3,2),
    ∴点E的坐标是:(3,2).
    故答案为:(3,2).

    【点睛】
    此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.

    三、解答题(共8题,共72分)
    17、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
    【解析】
    (1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
    (2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
    【详解】
    解:证明:∵四边形是平行四边形,
    ∴,,.
    ∵点、分别是、的中点,
    ∴,.
    ∴.
    在和中,

    ∴.
    解:当四边形是菱形时,四边形是矩形.

    证明:∵四边形是平行四边形,
    ∴.
    ∵,
    ∴四边形是平行四边形.
    ∵四边形是菱形,
    ∴.
    ∵,
    ∴.
    ∴,.
    ∵,
    ∴.
    ∴.
    即.
    ∴四边形是矩形.
    【点睛】
    本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
    18、 (1)见解析;(2)见解析;(3).
    【解析】
    (1)利用等腰三角形的性质,证明OC⊥AB即可;
    (2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;
    (3)根据勾股定理和三角函数解答即可.
    【详解】
    证明:(1)∵OA=OB,AC=BC,
    ∴OC⊥AB,
    ∴⊙O是AB的切线.
    (2)∵OA=OB,AC=BC,
    ∴∠AOC=∠BOC,
    ∵OE=OF,
    ∴∠OFE=∠OEF,
    ∵∠AOB=∠OFE+∠OEF,
    ∴∠AOC=∠OEF,
    ∴OC∥EF,
    ∴△GOC∽△GEF,
    ∴,
    ∵OD=OC,
    ∴OD•EG=OG•EF.
    (3)∵AB=4BD,
    ∴BC=2BD,设BD=m,BC=2m,OC=OD=r,
    在Rt△BOC中,∵OB2=OC2+BC2,
    即(r+m)2=r2+(2m)2,
    解得:r=1.5m,OB=2.5m,
    ∴sinA=sinB=.
    【点睛】
    考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
    19、(1)90°;(1)AE1+EB1=AC1,证明见解析.
    【解析】
    (1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;
    (1)根据勾股定理解答.
    【详解】
    解:(1)∵点D是BC边的中点,DE⊥BC,
    ∴DE是线段BC的垂直平分线,
    ∴EB=EC,
    ∴∠ECB=∠B=45°,
    ∴∠AEC=∠ECB+∠B=90°;
    (1)AE1+EB1=AC1.
    ∵∠AEC=90°,
    ∴AE1+EC1=AC1,
    ∵EB=EC,
    ∴AE1+EB1=AC1.
    【点睛】
    本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
    20、(1)详见解析;(2).
    【解析】
    ∵四边形ABCD是矩形,
    ∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,
    ∴∠EAD=∠AFB,
    ∵DE⊥AF,
    ∴∠AED=90°,
    在△ADE和△FAB中,
    ∴△ADE≌△FAB(AAS),
    ∴AE=BF=1
    ∵BF=FC=1
    ∴BC=AD=2
    故在Rt△ADE中,∠ADE=30°,DE=,
    ∴的长==.
    21、(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.
    【解析】
    (1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;
    (2)根据相似三角形的性质得出比例式,再进行变形即可.
    【详解】
    解:(1)△ACD 与△ABC相似,
    理由是:∵在 Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,
    ∴∠ADC=∠ACB=90°,
    ∵∠A=∠A,
    ∴△ACD∽∠ABC;
    (2)AC2=AB•AD成立,理由是:
    ∵△ACD∽∠ABC,
    ∴=,
    ∴AC2=AB•AD.
    【点睛】
    本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.
    22、(1)见解析;(2)四边形BFGN是菱形,理由见解析.
    【解析】
    (1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;
    (2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.
    【详解】
    (1)证明:过F作FH⊥BE于H点,

    在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,
    所以四边形BHFC为矩形,
    ∴CF=BH,
    ∵BF=EF,FH⊥BE,
    ∴H为BE中点,
    ∴BE=2BH,
    ∴BE=2CF;
    (2)四边形BFGN是菱形.
    证明:
    ∵将线段EF绕点F顺时针旋转90°得FG,
    ∴EF=GF,∠GFE=90°,
    ∴∠EFH+∠BFH+∠GFB=90°
    ∵BN∥FG,
    ∴∠NBF+∠GFB=180°,
    ∴∠NBA+∠ABC+∠CBF+∠GFB=180°,
    ∵∠ABC=90°,
    ∴∠NBA+∠CBF+∠GFB=180°−90°=90°,
    由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,
    ∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,
    由BHFC是矩形可得HF=BC,
    ∵BC=AB,∴HF=AB,
    在△ABN和△HFE中,,
    ∴△ABN≌△HFE,
    ∴NB=EF,
    ∵EF=GF,
    ∴NB=GF,
    又∵NB∥GF,
    ∴NBFG是平行四边形,
    ∵EF=BF,∴NB=BF,
    ∴平行四边NBFG是菱形.
    点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.
    23、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.
    【解析】
    (1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;
    (2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=,得到PA=AB-PB=,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=,根据切线的判定定理即可得到结论.
    【详解】
    (1)过A作AE⊥BC于E,
    则四边形AECD是矩形,
    ∴CE=AD=1,AE=CD=3,
    ∵AB=BC,
    ∴BE=AB-1,
    在Rt△ABE中,∵AB2=AE2+BE2,
    ∴AB2=32+(AB-1)2,
    解得:AB=5;
    (2)过P作PF⊥BQ于F,
    ∴BF=BQ=,
    ∴△PBF∽△ABE,
    ∴,
    ∴,
    ∴PB=,
    ∴PA=AB-PB=,
    过P作PG⊥CD于G交AE于M,
    ∴GM=AD=1,
    ∵DC⊥BC
    ∴PG∥BC
    ∴△APM∽△ABE,
    ∴,
    ∴,
    ∴PM=,
    ∴PG=PM+MG==PB,
    ∴圆P与直线DC相切.

    【点睛】
    本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
    24、(1)DF=EF+BE.理由见解析;(2)CF=1.
    【解析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AEF≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;
    (2)根据旋转的性质的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.
    解:(1)DF=EF+BE.理由:如图1所示,

    ∵AB=AD,
    ∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
    ∵∠ADC=∠ABE=90°,∴点C、D、G在一条直线上,∴EB=DG,AE=AG,∠EAB=∠GAD,
    ∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,
    ∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,
    在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;
    (2)∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连接FG,如图2,

    ∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,
    ∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;
    又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,
    在△AGF与△AEF中,,∴△AEF≌△AGF,∴EF=FG,
    ∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.
    “点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.

    相关试卷

    安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析: 这是一份安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,已知二次函数y=,在一组数据等内容,欢迎下载使用。

    2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析: 这是一份2022年山东菏泽郓城重点达标名校中考数学猜题卷含解析,共19页。试卷主要包含了的倒数是等内容,欢迎下载使用。

    重庆市新店重点达标名校2021-2022学年中考数学猜题卷含解析: 这是一份重庆市新店重点达标名校2021-2022学年中考数学猜题卷含解析,共31页。试卷主要包含了当函数y=,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map