2022年广西河池市环江县中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知圆内接正三角形的面积为3,则边心距是( )
A.2 B.1 C. D.
2.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )
A. B. C. D.
3.函数的自变量x的取值范围是( )
A.x>1 B.x<1 C.x≤1 D.x≥1
4.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
5.多项式4a﹣a3分解因式的结果是( )
A.a(4﹣a2) B.a(2﹣a)(2+a) C.a(a﹣2)(a+2) D.a(2﹣a)2
6.如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②△OAE∽△OPA;③当正方形的边长为3,BP=1时,cos∠DFO=,其中正确结论的个数是( )
A.0 B.1 C.2 D.3
7.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是( )
A.1 B.2 C.﹣ D.﹣
8.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )
A. B. C. D.
9.若式子在实数范围内有意义,则 x的取值范围是( )
A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
10.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t﹣5t2,汽车刹车后停下来前进的距离是( )
A.10m B.20m C.30m D.40m
11.如图所示:有理数在数轴上的对应点,则下列式子中错误的是( )
A. B. C. D.
12.若关于x的不等式组只有5个整数解,则a的取值范围( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为_____
14.新田为实现全县“脱贫摘帽”,2018年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为___.
15.计算:的结果为_____.
16.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是__________.
17.化简的结果是_______________.
18.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
20.(6分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.
(1)求直线AB和反比例函数的解析式;
(1)求△OCD的面积.
21.(6分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数表达式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
22.(8分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款.
某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.
(1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;
(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
23.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.
(1)求口袋中黄球的个数;
(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
24.(10分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.
25.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,.
请在如图所示的网格平面内作出平面直角坐标系;请作出关于轴对称的;点的坐标为 .的面积为 .
26.(12分)已知:关于x的方程x2﹣(2m+1)x+2m=0
(1)求证:方程一定有两个实数根;
(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.
27.(12分)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据题意画出图形,连接AO并延长交BC于点D,则AD⊥BC,设OD=x,由三角形重心的性质得AD=3x, 利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可.
【详解】
如图,
连接AO并延长交BC于点D,则AD⊥BC,
设OD=x,则AD=3x,
∵tan∠BAD=,
∴BD= tan30°·AD=x,
∴BC=2BD=2x,
∵ ,
∴×2x×3x=3,
∴x=1
所以该圆的内接正三边形的边心距为1,
故选B.
【点睛】
本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距.
2、D
【解析】
根据抛物线和直线的关系分析.
【详解】
由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.
故选D
【点睛】
考核知识点:反比例函数图象.
3、C
【解析】
试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.
试题解析:根据题意得:1-x≥0,
解得:x≤1.
故选C.
考点:函数自变量的取值范围.
4、B
【解析】
解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.
故选B.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.
5、B
【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).
故选:B.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
6、C
【解析】
由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据勾股定理求出直接用余弦可求出.
【详解】
详解:∵四边形ABCD是正方形,
∴AD=BC,
∵BP=CQ,
∴AP=BQ,
在△DAP与△ABQ中,
∴△DAP≌△ABQ,
∴∠P=∠Q,
∵
∴
∴
∴AQ⊥DP;
故①正确;
②无法证明,故错误.
∵BP=1,AB=3,
∴
∴ 故③正确,
故选C.
【点睛】
考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高.
7、C
【解析】
试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1•x2=﹣4代入,即可求出=.
故选C.
考点:根与系数的关系
8、B
【解析】
由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.
【详解】
根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.
故选B.
【点睛】
此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.
9、A
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
∵式子在实数范围内有意义,
∴ x﹣1>0, 解得:x>1.
故选:A.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
10、B
【解析】
利用配方法求二次函数最值的方法解答即可.
【详解】
∵s=20t-5t2=-5(t-2)2+20,
∴汽车刹车后到停下来前进了20m.
故选B.
【点睛】
此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键.
11、C
【解析】
从数轴上可以看出a、b都是负数,且a<b,由此逐项分析得出结论即可.
【详解】
由数轴可知:a B、同号相加,取相同的符号,a+b<0是正确的;
C、a<b<0,,故选项是错误的;
D、a-b=a+(-b)取a的符号,a-b<0是正确的.
故选:C.
【点睛】
此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.
12、A
【解析】
分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.
【详解】
解①得x<20
解②得x>3-2a,
∵不等式组只有5个整数解,
∴不等式组的解集为3-2a<x<20,
∴14≤3-2a<15,
故选:A
【点睛】
本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a<15是解此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、115°
【解析】
根据三角形的内角和得到∠BAC+∠ACB=130°,根据线段的垂直平分线的性质得到AM=PM,PN=CN,由等腰三角形的性质得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到结论.
【详解】
∵∠ABC=50°,
∴∠BAC+∠ACB=130°,
∵若M在PA的中垂线上,N在PC的中垂线上,
∴AM=PM,PN=CN,
∴∠MAP=∠APM,∠CPN=∠PCN,
∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,
∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,
∴∠APC=115°,
故答案为:115°
【点睛】
本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.
14、2.35×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将235000000用科学记数法表示为:2.35×1.
故答案为:2.35×1.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15、
【解析】
分析:根据二次根式的性质先化简,再合并同类二次根式即可.
详解:原式=3-5=﹣2.
点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.
16、.
【解析】
根据合数定义,用合数的个数除以数的总数即为所求的概率.
【详解】
∵在1,2,3,4,5,6,7,8这八个数中,合数有4、6、8这3个,∴这个数恰好是合数的概率是.
故答案为:.
【点睛】
本题考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到合数的个数是解题的关键.
17、
【解析】
先将分式进行通分,即可进行运算.
【详解】
=-=
【点睛】
此题主要考查分式的加减,解题的关键是先将它们通分.
18、1.
【解析】
由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.
【详解】
∵BD⊥CD,BD=2,
∴S△BCD=BD•CD=2,
即CD=2.
∵C(2,0),
即OC=2,
∴OD=OC+CD=2+2=1,
∴B(1,2),代入反比例解析式得:k=10,
即y=,
则S△AOC=1.
故答案为1.
【点睛】
本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、1人
【解析】
解:设九年级学生有x人,根据题意,列方程得:
,整理得0.8(x+88)=x,解之得x=1.
经检验x=1是原方程的解.
答:这个学校九年级学生有1人.
设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程,解方程即可.
20、(1),;(1)2.
【解析】
试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
(1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.
试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;
(1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.
考点:反比例函数与一次函数的交点问题.
21、(1);(2)2<m<;(1)m=6或m=﹣1.
【解析】
(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;
(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,由,消去y得到,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;
(1)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.
【详解】
(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,
∴抛物线C的函数表达式为.
(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,
由,
消去y得到 ,
由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,
解得2<m<,
∴满足条件的m的取值范围为2<m<.
(1)结论:四边形PMP′N能成为正方形.
理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.
由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在上,∴,解得m=﹣1或﹣﹣1(舍弃),∴m=﹣1时,四边形PMP′N是正方形.
情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),
把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍弃),
∴m=6时,四边形PMP′N是正方形.
综上所述:m=6或m=﹣1时,四边形PMP′N是正方形.
22、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.
【解析】
(1)根据方案即可列出函数关系式;
(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.
解:(1) 得:;
得:;
(2)
,
因为w是m的一次函数,k=-4<0,
所以w随的增加而减小,m当m=20时,w取得最小值.
即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.
23、 (1)1;(2)
【解析】
(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;
【详解】
解:(1)设口袋中黄球的个数为个,
根据题意得:
解得:=1
经检验:=1是原分式方程的解
∴口袋中黄球的个数为1个
(2)画树状图得:
∵共有12种等可能的结果,两次摸出都是红球的有2种情况
∴两次摸出都是红球的概率为: .
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.
24、2+1
【解析】
根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.
【详解】
原式=-1+3+
= -1+3+
=2+1.
【点睛】
本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.
25、(1)见解析;(2)见解析;(3);(4)4.
【解析】
(1)根据C点坐标确定原点位置,然后作出坐标系即可;
(2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;
(3)根据点在坐标系中的位置写出其坐标即可
(4)利用长方形的面积剪去周围多余三角形的面积即可.
【详解】
解:(1)如图所示:
(2)如图所示:
(3)结合图形可得:;
(4) .
【点睛】
此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.
26、 (1)详见解析;(2)当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
【解析】
试题分析:(1)根据判别式△≥0恒成立即可判断方程一定有两个实数根;
(2)先讨论x1,x2的正负,再根据根与系数的关系求解.
试题解析:(1)关于x的方程x2﹣(2m+1)x+2m=0,
∴△=(2m+1)2﹣8m=(2m﹣1)2≥0恒成立,
故方程一定有两个实数根;
(2)①当x1≥0,x2≥0时,即x1=x2,
∴△=(2m﹣1)2=0,
解得m=;
②当x1≥0,x2≤0时或x1≤0,x2≥0时,即x1+x2=0,
∴x1+x2=2m+1=0,
解得:m=﹣;
③当x1≤0,x2≤0时,即﹣x1=﹣x2,
∴△=(2m﹣1)2=0,
解得m=;
综上所述:当x1≥0,x2≥0或当x1≤0,x2≤0时,m=;当x1≥0,x2≤0时或x1≤0,x2≥0时,m=﹣.
27、详见解析.
【解析】
试题分析:由三角形的中位线得出OE∥AB,进一步利用平行线的性质和等腰三角形性质,找出△OCE和△ODE相等的线段和角,证得全等得出答案即可.
试题解析:证明:∵点E为AC的中点,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.
在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD, OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切线.
点睛:此题考查切线的判定.证明的关键是得到△OCE≌△ODE.
2022-2023学年广西河池市环江县九年级(上)期末数学试卷(含解析): 这是一份2022-2023学年广西河池市环江县九年级(上)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022-2023学年广西河池市环江县七年级(下)期末数学试卷(含解析): 这是一份2022-2023学年广西河池市环江县七年级(下)期末数学试卷(含解析),共17页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022年广西河池市环江县中考数学模拟试卷(二)(Word解析版): 这是一份2022年广西河池市环江县中考数学模拟试卷(二)(Word解析版),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。