2022年广西柳州市城中区中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为( )
A.﹣2 B.0 C.1 D.3
2.不等式组的解集在数轴上表示正确的是( )
A. B. C. D.
3.下列各式属于最简二次根式的有( )
A. B. C. D.
4.下列计算或化简正确的是( )
A. B.
C. D.
5.如图所示的几何体,它的左视图是( )
A. B. C. D.
6.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为( )
A.100° B.110° C.120° D.130°
7.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于( )
A.4 B.6 C.16π D.8
8.按一定规律排列的一列数依次为:﹣,1,﹣,、﹣、…,按此规律,这列数中的第100个数是( )
A.﹣ B. C. D.
9.下列事件是必然事件的是( )
A.任意作一个平行四边形其对角线互相垂直
B.任意作一个矩形其对角线相等
C.任意作一个三角形其内角和为
D.任意作一个菱形其对角线相等且互相垂直平分
10.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图放置的正方形,正方形,正方形,…都是边长为的正方形,点在轴上,点,…,都在直线上,则的坐标是__________,的坐标是______.
12.有一组数据:3,a,4,6,7,它们的平均数是5,则a=_____,这组数据的方差是_____.
13.方程的解是 .
14.将数字37000000用科学记数法表示为_____.
15.早春二月的某一天,大连市南部地区的平均气温为﹣3℃,北部地区的平均气温为﹣6℃,则当天南部地区比北部地区的平均气温高_____℃.
16.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)
17.直线y=x与双曲线y=在第一象限的交点为(a,1),则k=_____.
三、解答题(共7小题,满分69分)
18.(10分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.
求,,的值;求四边形的面积.
19.(5分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)
20.(8分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.
求A,B两种品牌的足球的单价.求该校购买20个A品牌的足球和2个B品牌的足球的总费用.
21.(10分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.
(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;
(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;
(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.
22.(10分)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.
23.(12分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)
(2)当每辆车的日租金为多少元时,每天的净收入最多?
24.(14分)某校检测学生跳绳水平,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图
(1)D组的人数是 人,补全频数分布直方图,扇形图中m= ;
(2)本次调查数据中的中位数落在 组;
(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校4500名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.
【详解】
由关于y的不等式组,可整理得
∵该不等式组解集无解,
∴2a+4≥﹣2
即a≥﹣3
又∵得x=
而关于x的分式方程有负数解
∴a﹣4<1
∴a<4
于是﹣3≤a<4,且a 为整数
∴a=﹣3、﹣2、﹣1、1、1、2、3
则符合条件的所有整数a的和为1.
故选B.
【点睛】
本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.
2、D
【解析】
试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.
考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.
3、B
【解析】
先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.
【详解】
A选项:,故不是最简二次根式,故A选项错误;
B选项:是最简二次根式,故B选项正确;
C选项:,故不是最简二次根式,故本选项错误;
D选项:,故不是最简二次根式,故D选项错误;
故选:B.
【点睛】
考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.
4、D
【解析】
解:A.不是同类二次根式,不能合并,故A错误;
B. ,故B错误;
C.,故C错误;
D.,正确.
故选D.
5、D
【解析】
分析:根据从左边看得到的图形是左视图,可得答案.
详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,
故选D.
点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
6、B
【解析】
根据同弧所对的圆周角是圆心角度数的一半即可解题.
【详解】
∵∠BOC=40°,∠AOB=180°,
∴∠BOC+∠AOB=220°,
∴∠D=110°(同弧所对的圆周角是圆心角度数的一半),
故选B.
【点睛】
本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键.
7、A
【解析】
由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.
【详解】
解:由题意知:底面周长=8π,
∴底面半径=8π÷2π=1.
故选A.
【点睛】
此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.
8、C
【解析】
根据按一定规律排列的一列数依次为:,1,,,,…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,型;分子为型,可得第100个数为.
【详解】
按一定规律排列的一列数依次为:,1,,,,…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,型;分子为型,
可得第n个数为,
∴当时,这个数为,
故选:C.
【点睛】
本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.
9、B
【解析】
必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.
【详解】
解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;
B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;
C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;
D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,
故选:B.
【点睛】
解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.
10、D
【解析】
根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:
几何体的左视图是:
.
故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可.
【详解】
分别过点 作y轴的垂线交y轴于点,
∵点B在上
设
∴
同理, 都是含30°的直角三角形
∵,
∴
同理,点 的横坐标为
纵坐标为
故点的坐标为
故答案为:;.
【点睛】
本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.
12、5 1.
【解析】
∵一组数据:3,a,4,6,7,它们的平均数是5,
∴,
解得,,
∴=1.
故答案为5,1.
13、x=1.
【解析】
根据解分式方程的步骤解答即可.
【详解】
去分母得:2x=3x﹣1,
解得:x=1,
经检验x=1是分式方程的解,
故答案为x=1.
【点睛】
本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键.
14、3.7×107
【解析】
根据科学记数法即可得到答案.
【详解】
数字37000000用科学记数法表示为3.7×107.
【点睛】
本题主要考查了科学记数法的基本概念,解本题的要点在于熟知科学记数法的相关知识.
15、3
【解析】
用南部气温减北部的气温,根据“减去一个数等于加上这个数的相反数”求出它们的差就是高出的温度.
【详解】
解:(﹣3)﹣(﹣6)=﹣3+6=3℃.
答:当天南部地区比北部地区的平均气温高3℃,故答案为:3.
【点睛】
本题考查了有理数的减法运算法则,减法运算法则:减去一个数等于加上这个数的相反数.
16、1.
【解析】
试题解析:在RtΔABC中,sin34°=
∴AC=AB×sin34°=500×0.56=1米.
故答案为1.
17、1
【解析】
分析:首先根据正比例函数得出a的值,然后将交点坐标代入反比例函数解析式得出k的值.
详解:将(a,1)代入正比例函数可得:a=1, ∴交点坐标为(1,1),
∴k=1×1=1.
点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.根据正比例函数得出交点坐标是解题的关键.
三、解答题(共7小题,满分69分)
18、(1),,.(2)6
【解析】
(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.
【详解】
解:(1)∵点在上,
∴,
∵点在上,且,
∴.
∵过,两点,
∴,
解得,
∴,,.
(2)如图,延长,交于点,则.
∵轴,轴,
∴,,
∴,,
∴
.
∴四边形的面积为6.
【点睛】
考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.
19、至少涨到每股6.1元时才能卖出.
【解析】
根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.
【详解】
解:设涨到每股x元时卖出,
根据题意得1000x-(5000+1000x)×0.5%≥5000+1000,
解这个不等式得x≥,
即x≥6.1.
答:至少涨到每股6.1元时才能卖出.
【点睛】
本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.
20、(1)一个A品牌的足球需90元,则一个B品牌的足球需100元;(2)1.
【解析】
(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,根据“购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元”列出方程组并解答;
(2)把(1)中的数据代入求值即可.
【详解】
(1)设一个A品牌的足球需x元,则一个B品牌的足球需y元,依题意得:,解得:.
答:一个A品牌的足球需40元,则一个B品牌的足球需100元;
(2)依题意得:20×40+2×100=1(元).
答:该校购买20个A品牌的足球和2个B品牌的足球的总费用是1元.
考点:二元一次方程组的应用.
21、(1)DD′=1,A′F= 4﹣;(2);(1).
【解析】
(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;
②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;
(2)由△A′DF∽△A′D′C,可推出DF的长,同理可得△CDE∽△CB′A′,可求出DE的长,即可解决问题;
(1)如图③中,作FG⊥CB′于G,由S△ACF=•AC•CF=•AF•CD,把问题转化为求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;
【详解】
解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',
∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.
∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,
∴DD′=CD=1.
②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,
∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.
在Rt△CD′F中,∵tan∠D′CF=,
∴D′F=,∴A′F=A′D′﹣D′F=4﹣.
(2)如图②中,在Rt△A′CD′中,∵∠D′=90°,
∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,
∴△A′DF∽△A′D′C,∴,∴,
∴DF=.
同理可得△CDE∽△CB′A′,∴,∴,
∴ED=,∴EF=ED+DF=.
(1)如图③中,作FG⊥CB′于G.∵四边形A′B′CD′是矩形,∴GF=CD′=CD=1.
∵S△CEF=•EF•DC=•CE•FG,
∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.
∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,
∴AC2=AD•AF,∴AF=.
∵S△ACF=•AC•CF=•AF•CD,
∴AC•CF=AF•CD=.
22、解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4 =x2﹣1.
当x=﹣时,原式=(﹣)2﹣1=3﹣1=﹣2.
【解析】
应用整式的混合运算法则进行化简,最后代入x值求值.
23、(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元.
【解析】
试题分析:(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,由净收入为正列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.
试题解析:(1)由题意知,若观光车能全部租出,则0<x≤100,
由50x﹣1100>0,
解得x>22,
又∵x是5的倍数,
∴每辆车的日租金至少应为25元;
(2)设每辆车的净收入为y元,
当0<x≤100时,y1=50x﹣1100,
∵y1随x的增大而增大,
∴当x=100时,y1的最大值为50×100﹣1100=3900;
当x>100时,
y2=(50﹣)x﹣1100
=﹣x2+70x﹣1100
=﹣(x﹣175)2+5025,
当x=175时,y2的最大值为5025,
5025>3900,
故当每辆车的日租金为175元时,每天的净收入最多是5025元.
考点:二次函数的应用.
24、(1)16、84°;(2)C;(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有3000(人)
【解析】
(1)根据百分比=所长人数÷总人数,圆心角=百分比,计算即可;
(2)根据中位数的定义计算即可;
(3)用一半估计总体的思考问题即可;
【详解】
(1)由题意总人数人,
D组人数人;
B组的圆心角为;
(2)根据A组6人,B组14人,C组19人,D组16人,E组5人可知本次调查数据中的中位数落在C组;
(3)该校4500名学生中“1分钟跳绳”成绩为优秀的大约有人.
【点睛】
本题主要考查了数据的统计,熟练掌握扇形图圆心角度数求解方法,总体求解方法等相关内容是解决本题的关键.
2022年广西柳州市城中区中考数学一模试卷: 这是一份2022年广西柳州市城中区中考数学一模试卷,共20页。试卷主要包含了填空题..,解答题.等内容,欢迎下载使用。
2022年广西柳州市城中区中考数学二模试卷: 这是一份2022年广西柳州市城中区中考数学二模试卷,共23页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。
2023年广西柳州市城中区中考数学三模试卷(含解析): 这是一份2023年广西柳州市城中区中考数学三模试卷(含解析),共23页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。