2022年河南省洛阳市偃师县达标名校中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( )
A.36° B.54° C.72° D.108°
2.下列式子一定成立的是( )
A.2a+3a=6a B.x8÷x2=x4
C. D.(﹣a﹣2)3=﹣
3.已知关于x的一元二次方程有两个相等的实根,则k的值为( )
A. B. C.2或3 D.或
4.﹣18的倒数是( )
A.18 B.﹣18 C.- D.
5.在0,-2,5,,-0.3中,负数的个数是( ).
A.1 B.2 C.3 D.4
6.实数a、b在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<0
7.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )
A.50° B.60° C.70° D.80°
8.如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为( )
A.y= B.y= C.y= D.y=﹣
9.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=( )
A. B. C. D.
10.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )
A.(2,1) B.(2,0) C.(3,3) D.(3,1)
二、填空题(共7小题,每小题3分,满分21分)
11.已知线段AB=2cm,点C在线段AB上,且AC2=BC·AB,则AC的长___________cm.
12.如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为_____.
13.不等式>4﹣x的解集为_____.
14.化简:= .
15.如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.
16.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.
17.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.
三、解答题(共7小题,满分69分)
18.(10分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.
(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;
(2)若OA=3BC,求k的值.
19.(5分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O.连接OA、OB、OC、OD.OE是边CD的中线,且∠AOB+∠COD=180°
(1)如图2,当△ABO是等边三角形时,求证:OE=AB;
(2)如图3,当△ABO是直角三角形时,且∠AOB=90°,求证:OE=AB;
(3)如图4,当△ABO是任意三角形时,设∠OAD=α,∠OBC=β,
①试探究α、β之间存在的数量关系?
②结论“OE=AB”还成立吗?若成立,请你证明;若不成立,请说明理由.
20.(8分)已知二次函数y=a(x+m)2的顶点坐标为(﹣1,0),且过点A(﹣2,﹣).
(1)求这个二次函数的解析式;
(2)点B(2,﹣2)在这个函数图象上吗?
(3)你能通过左,右平移函数图象,使它过点B吗?若能,请写出平移方案.
21.(10分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.
(1)填空_______,_______,数学成绩的中位数所在的等级_________.
(2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;
(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数.
①如下分数段整理样本
等级等级
分数段
各组总分
人数
4
843
574
171
2
②根据上表绘制扇形统计图
22.(10分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:
(1)求两人相遇时小明离家的距离;
(2)求小丽离距离图书馆500m时所用的时间.
23.(12分)按要求化简:(a﹣1)÷,并选择你喜欢的整数a,b代入求值.
小聪计算这一题的过程如下:
解:原式=(a﹣1)÷…①
=(a﹣1)•…②
=…③
当a=1,b=1时,原式=…④
以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;
还有第_____步出错(填序号),原因:_____.
请你写出此题的正确解答过程.
24.(14分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.
(1)第一次购书的进价是多少元?
(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是=72度,
故选C.
2、D
【解析】
根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.
【详解】
解:A:2a+3a=(2+3)a=5a,故A错误;
B:x8÷x2=x8-2=x6,故B错误;
C:=,故C错误;
D:(-a-2)3=-a-6=-,故D正确.
故选D.
【点睛】
本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.
3、A
【解析】
根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.
【详解】
∵方程有两个相等的实根,
∴△=k2-4×2×3=k2-24=0,
解得:k=.
故选A.
【点睛】
本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.
4、C
【解析】
根据乘积为1的两个数互为倒数,可得一个数的倒数.
【详解】
∵-18=1,
∴﹣18的倒数是,
故选C.
【点睛】
本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
5、B
【解析】
根据负数的定义判断即可
【详解】
解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1.
故选B.
6、C
【解析】
直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案.
【详解】
选项A,从数轴上看出,a在﹣1与0之间,
∴﹣1<a<0,
故选项A不合题意;
选项B,从数轴上看出,a在原点左侧,b在原点右侧,
∴a<0,b>0,
∴ab<0,
故选项B不合题意;
选项C,从数轴上看出,a在b的左侧,
∴a<b,
即a﹣b<0,
故选项C符合题意;
选项D,从数轴上看出,a在﹣1与0之间,
∴1<b<2,
∴|a|<|b|,
∵a<0,b>0,
所以a+b=|b|﹣|a|>0,
故选项D不合题意.
故选:C.
【点睛】
本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.
7、C
【解析】
解:∵OM=60海里,ON=80海里,MN=100海里,
∴OM2+ON2=MN2,
∴∠MON=90°,
∵∠EOM=20°,
∴∠NOF=180°﹣20°﹣90°=70°.
故选C.
【点睛】
本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.
8、C
【解析】
由双曲线中k的几何意义可知 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.
【详解】
∵S△AOC=4,
∴k=2S△AOC=8;
∴y=;
故选C.
【点睛】
本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;
9、C
【解析】
根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.
【详解】
∵D(0,3),C(4,0),
∴OD=3,OC=4,
∵∠COD=90°,
∴CD= =5,
连接CD,如图所示:
∵∠OBD=∠OCD,
∴cos∠OBD=cos∠OCD= .
故选:C.
【点睛】
本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.
10、A
【解析】
根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.
【详解】
由题意得,△ODC∽△OBA,相似比是,
∴,
又OB=6,AB=3,
∴OD=2,CD=1,
∴点C的坐标为:(2,1),
故选A.
【点睛】
本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
设AC=x,则BC=2-x,根据AC2=BC·AB列方程求解即可.
【详解】
解:设AC=x,则BC=2-x,根据AC2=BC·AB可得x2=2(2-x),
解得:x=或(舍去).
故答案为.
【点睛】
本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.
12、
【解析】
分析:以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,即可得到点D运动的路径长为=2π.
详解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°.∵⊙O的直径为AB,C为的中点,∴∠APC=45°.又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的.又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.
故答案为2π.
点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键.
13、x>1.
【解析】
按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.
【详解】
解:去分母得:x﹣1>8﹣2x,
移项合并得:3x>12,
解得:x>1,
故答案为:x>1
【点睛】
本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.
14、2
【解析】
根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根, 特别地,规定0的算术平方根是0.
【详解】
∵22=4,∴=2.
【点睛】
本题考查求算术平方根,熟记定义是关键.
15、 (2,3)
【解析】
作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.
【详解】
如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,
∵点A、B的坐标分别为(-2,1)、(1,0),
∴AC=2,BC=2+1=3,
∵∠ABA′=90°,
∴ABC+∠A′BC′=90°,
∵∠BAC+∠ABC=90°,
∴∠BAC=∠A′BC′,
∵BA=BA′,∠ACB=∠BC′A′,
∴△ABC≌△BA′C′,
∴OC′=OB+BC′=1+1=2,A′C′=BC=3,
∴点A′的坐标为(2,3).
故答案为(2,3).
【点睛】
此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.
16、950
【解析】
设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,得到工作日期间一天的销售收入为:8x+6x+5x=19x元,和周六销售销售收入为:12x+9.6x+7.5x=29.1x元,再结合题意得到10.1x﹣(5﹣3)=503,计算即可得到答案.
【详解】
解:设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,
工作日期间一天的销售收入为:8x+6x+5x=19x元,
周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,
周六销售销售收入为:12x+9.6x+7.5x=29.1x元,
周六销售收入与工作日期间一天销售收入的差为:29.1x﹣19x=10.1x元,
由于发生一起错单,收入的差为503元,因此,503加减一瓶饮料的差价一定是10.1的整数倍,
所以这起错单发生在B、C饮料上(B、C一瓶的差价为2元),且是消费者付B饮料的钱,取走的是C饮料;
于是有:10.1x﹣(5﹣3)=503
解得:x=50
工作日期间一天的销售收入为:19×50=950元,
故答案为:950.
【点睛】
本题考查一元一次方程的实际应用,解题的关键是由题意得到等量关系.
17、100 mm1
【解析】
首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.
【详解】
根据三视图可得:上面的长方体长4mm,高4mm,宽1mm,
下面的长方体长8mm,宽6mm,高1mm,
∴立体图形的表面积是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).
故答案为100 mm1.
【点睛】
此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)k=b2+4b;(2).
【解析】
试题分析:(1)分别求出点B的坐标,即可解答.
(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x
试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,
∴平移后直线的解析式为y=+4,
∵点B在直线y=+4上,
∴B(b,b+4),
∵点B在双曲线y=上,
∴B(b,),
令b+4=
得
(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),
∵OA=3BC,BC∥OA,CF∥x轴,
∴CF=OD,
∵点A、B在双曲线y=上,
∴3b•b=,解得b=1,
∴k=3×1××1=.
考点:反比例函数综合题.
19、(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析.
【解析】
(1)作OH⊥AB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明△OCE≌△OBH,根据全等三角形的性质证明;
(2)证明△OCD≌△OBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;
(3)①根据等腰三角形的性质、三角形内角和定理计算;
②延长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明.
【详解】
(1)作OH⊥AB于H,
∵AD、BC的垂直平分线相交于点O,
∴OD=OA,OB=OC,
∵△ABO是等边三角形,
∴OD=OC,∠AOB=60°,
∵∠AOB+∠COD=180°
∴∠COD=120°,
∵OE是边CD的中线,
∴OE⊥CD,
∴∠OCE=30°,
∵OA=OB,OH⊥AB,
∴∠BOH=30°,BH=AB,
在△OCE和△BOH中,
,
∴△OCE≌△OBH,
∴OE=BH,
∴OE=AB;
(2)∵∠AOB=90°,∠AOB+∠COD=180°,
∴∠COD=90°,
在△OCD和△OBA中,
,
∴△OCD≌△OBA,
∴AB=CD,
∵∠COD=90°,OE是边CD的中线,
∴OE=CD,
∴OE=AB;
(3)①∵∠OAD=α,OA=OD,
∴∠AOD=180°﹣2α,
同理,∠BOC=180°﹣2β,
∵∠AOB+∠COD=180°,
∴∠AOD+∠COB=180°,
∴180°﹣2α+180°﹣2β=180°,
整理得,α+β=90°;
②延长OE至F,使EF=OE,连接FD、FC,
则四边形FDOC是平行四边形,
∴∠OCF+∠COD=180°,,
∴∠AOB=∠FCO,
在△FCO和△AOB中,
,
∴△FCO≌△AOB,
∴FO=AB,
∴OE=FO=AB.
【点睛】
本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
20、(1)y=﹣(x+1)1;(1)点B(1,﹣1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;
【解析】
(1)根据待定系数法即可得出二次函数的解析式;
(1)代入B(1,-1)即可判断;
(3)根据题意设平移后的解析式为y=-(x+1+m)1,代入B的坐标,求得m的植即可.
【详解】
解:(1)∵二次函数y=a(x+m)1的顶点坐标为(﹣1,0),
∴m=1,
∴二次函数y=a(x+1)1,
把点A(﹣1,﹣)代入得a=﹣,
则抛物线的解析式为:y=﹣(x+1)1.
(1)把x=1代入y=﹣(x+1)1得y=﹣≠﹣1,
所以,点B(1,﹣1)不在这个函数的图象上;
(3)根据题意设平移后的解析式为y=﹣(x+1+m)1,
把B(1,﹣1)代入得﹣1=﹣(1+1+m)1,
解得m=﹣1或﹣5,
所以抛物线向左平移1个单位或平移5个单位函数,即可过点B.
【点睛】
本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换.
21、(1)6;8;B;(2)120人;(3)113分.
【解析】
(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;
(2)根据表格中的数据可以求得D等级的人数;
(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.
【详解】
(1)本次抽查的学生有:(人),
,
数学成绩的中位数所在的等级B,
故答案为:6,11,B;
(2)120(人),
答:D等级的约有120人;
(3)由表可得,
A等级学生的数学成绩的平均分数:(分),
即A等级学生的数学成绩的平均分是113分.
【点睛】
本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.
22、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分.
【解析】
(1)根据题意得出小明的速度,进而得出得出小明离家的距离;
(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.
【详解】
解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),
300×5=1500(米),
∴两人相遇时小明离家的距离为1500米;
(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),
设小丽离距离图书馆500m时所用的时间为x分,根据题意得,
1500+120(x﹣10)=4500﹣500,
解得x=.
答:小丽离距离图书馆500m时所用的时间为分.
【点睛】
本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.
23、①, 运算顺序错误; ④, a等于1时,原式无意义.
【解析】
由于乘法和除法是同级运算,应当按照从左向右的顺序计算,①运算顺序错误;④当a=1时,等于0,原式无意义.
【详解】
①运算顺序错误;
故答案为①,运算顺序错误;
④当a=1时,等于0,原式无意义.
故答案为a等于1时,原式无意义.
当时,原式
【点睛】
本题考查了分式的化简求值,注意运算顺序和分式有意义的条件.
24、赚了520元
【解析】
(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;
(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.
【详解】
(1)设第一次购书的单价为x元,
根据题意得:+10=,
解得:x=5,
经检验,x=5是原方程的解,
答:第一次购书的进价是5元;
(2)第一次购书为1200÷5=240(本),
第二次购书为240+10=250(本),
第一次赚钱为240×(7﹣5)=480(元),
第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),
所以两次共赚钱480+40=520(元),
答:该老板两次售书总体上是赚钱了,共赚了520元.
【点睛】
此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
南省洛阳市偃师县重点名校2022年中考数学全真模拟试题含解析: 这是一份南省洛阳市偃师县重点名校2022年中考数学全真模拟试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
河南省郑州市^&重点达标名校2022年中考数学押题试卷含解析: 这是一份河南省郑州市^&重点达标名校2022年中考数学押题试卷含解析,共23页。试卷主要包含了关于x的正比例函数,y=,已知电流I,下列各式中,计算正确的是,下列事件中为必然事件的是等内容,欢迎下载使用。
河南省洛阳市偃师县达标名校2022年十校联考最后数学试题含解析: 这是一份河南省洛阳市偃师县达标名校2022年十校联考最后数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,估计的值在,计算÷的结果是等内容,欢迎下载使用。