2022年河池市重点中学中考猜题数学试卷含解析
展开
这是一份2022年河池市重点中学中考猜题数学试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,规定,6的绝对值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.关于的方程有实数根,则整数的最大值是( )
A.6 B.7 C.8 D.9
2.二次函数(a≠0)的图象如图所示,则下列命题中正确的是( )
A.a >b>c
B.一次函数y=ax +c的图象不经第四象限
C.m(am+b)+b<a(m是任意实数)
D.3b+2c>0
3.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )
A. B. C. D.
4.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )
A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣7
5.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )
A. B. C. D.
6.下列函数中,当x>0时,y值随x值增大而减小的是( )
A.y=x2 B.y=x﹣1 C. D.
7.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是( )
A.()2016 B.()2017 C.()2016 D.()2017
8.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程x2+2x﹣8=0是倍根方程;
②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;
③若关于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax2﹣6ax+c与x轴的公共点的坐标是(2,0)和(4,0);
④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程.
上述结论中正确的有( )
A.①② B.③④ C.②③ D.②④
9.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是( )
A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+2
10.6的绝对值是( )
A.6 B.﹣6 C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______.
12.如图,若正五边形和正六边形有一边重合,则∠BAC=_____.
13.化简:①=_____;②=_____;③=_____.
14.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,,则=_____.
15.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.
16.函数中,自变量的取值范围是______
三、解答题(共8题,共72分)
17.(8分)(1)计算:sin45°
(2)解不等式组:
18.(8分)先化简,后求值:a2•a4﹣a8÷a2+(a3)2,其中a=﹣1.
19.(8分)已知矩形ABCD,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部(如图),将半圆O绕点A顺时针旋转α度(0°≤α≤180°)
(1)半圆的直径落在对角线AC上时,如图所示,半圆与AB的交点为M,求AM的长;
(2)半圆与直线CD相切时,切点为N,与线段AD的交点为P,如图所示,求劣弧AP的长;
(3)在旋转过程中,半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,直接写出d的取值范围.
20.(8分)如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1:,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.求斜坡CD的高度DE;求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).
21.(8分)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.
22.(10分)如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.
23.(12分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.
24.计算:﹣14﹣2×(﹣3)2+÷(﹣)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
【详解】
当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
取最大整数,即a=1.
故选C.
2、D
【解析】
解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;
B.∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;
C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;
D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②
①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;
故选D.
点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.
3、A
【解析】
试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,
∴这个斜坡的水平距离为:=10m,
∴这个斜坡的坡度为:50:10=5:1.
故选A.
点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.
4、C
【解析】
试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.
考点:科学记数法.
5、B
【解析】
根据俯视图是从上往下看的图形解答即可.
【详解】
从上往下看到的图形是:
.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
6、D
【解析】
A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误
B、k>0,y随x增大而增大,故此选项错误
C、B、k>0,y随x增大而增大,故此选项错误
D、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确
7、C
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°=,则B2C2===()1,
同理可得:B3C3==()2,
故正方形AnBnCnDn的边长是:()n﹣1.
则正方形A2017B2017C2017D2017的边长是:()2.
故选C.
“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
8、C
【解析】
分析:①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设=2,得到•=2=2,得到当=1时,=2,当=-1时,=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程m+5x+n=0即可得到正确的结论;
详解:①由-2x-8=0,得:(x-4)(x+2)=0, 解得=4,=-2, ∵≠2,或≠2,
∴方程-2x-8=0不是倍根方程;故①错误;
②关于x的方程+ax+2=0是倍根方程, ∴设=2, ∴•=2=2, ∴=±1,
当=1时,=2, 当=-1时,=-2, ∴+=-a=±3, ∴a=±3,故②正确;
③关于x的方程a-6ax+c=0(a≠0)是倍根方程, ∴=2,
∵抛物线y=a-6ax+c的对称轴是直线x=3, ∴抛物线y=a-6ax+c与x轴的交点的坐标是(2,0)和(4,0), 故③正确;
④∵点(m,n)在反比例函数y=的图象上, ∴mn=4, 解m+5x+n=0得
=,=, ∴=4, ∴关于x的方程m+5x+n=0不是倍根方程;
故选C.
点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.
9、D
【解析】
抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.
【详解】
当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.
∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);
当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.
则这条直线解析式为y=﹣x+1.
故选D.
【点睛】
本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.
10、A
【解析】
试题分析:1是正数,绝对值是它本身1.故选A.
考点:绝对值.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.
解:设黄球的个数为x个,
根据题意得:=2/3解得:x=1.
∴黄球的个数为1.
12、132°
【解析】
解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.
13、4 5 5
【解析】
根据二次根式的性质即可求出答案.
【详解】
①原式=4;②原式==5;③原式==5,
故答案为:①4;②5;③5
【点睛】
本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.
14、
【解析】
试题分析:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,
∴==,
则===.
故答案为.
点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.
15、k≥﹣1
【解析】
分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.
详解:∵关于x的一元二次方程x2+1x-k=0有实数根,
∴△=12-1×1×(-k)=16+1k≥0,
解得:k≥-1.
故答案为k≥-1.
点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
16、x≠1
【解析】
解:∵有意义,
∴x-1≠0,
∴x≠1;
故答案是:x≠1.
三、解答题(共8题,共72分)
17、(1);(2)﹣2<x≤1.
【解析】
(1)根据绝对值、特殊角的三角函数值可以解答本题;
(2)根据解一元一次不等式组的方法可以解答本题.
【详解】
(1)sin45°
=3-+×-5+×
=3-+3-5+1
=7--5;
(2)(2)
由不等式①,得
x>-2,
由不等式②,得
x≤1,
故原不等式组的解集是-2<x≤1.
【点睛】
本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
18、1
【解析】
先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.
【详解】
原式=a6﹣a6+a6=a6,
当a=﹣1时,原式=1.
【点睛】
本题主要考查同底数幂的乘除以及幂的乘方运算法则.
19、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.
【解析】
(2)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;
(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,进而可得出△AOP为等边三角形,再利用弧长公式即可求出劣弧AP的长;
(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.
【详解】
(2)在图2中,连接B′M,则∠B′MA=90°.
在Rt△ABC中,AB=4,BC=3,
∴AC=2.
∵∠B=∠B′MA=90°,∠BCA=∠MAB′,
∴△ABC∽△AMB′,
∴=,即=,
∴AM=;
(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G,
∵半圆与直线CD相切,
∴ON⊥DN,
∴四边形DGON为矩形,
∴DG=ON=2,
∴AG=AD-DG=2.
在Rt△AGO中,∠AGO=90°,AO=2,AG=2,
∴∠AOG=30°,∠OAG=60°.
又∵OA=OP,
∴△AOP为等边三角形,
∴==π.
(3)由(2)可知:△AOP为等边三角形,
∴DN=GO=OA=,
∴CN=CD+DN=4+.
当点B′在直线CD上时,如图4所示,
在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,
∴B′D==,
∴CB′=4-.
∵AB′为直径,
∴∠ADB′=90°,
∴当点B′在点D右边时,半圆交直线CD于点D、B′.
∴当半圆弧与直线CD只有一个交点时,4-≤d<4或d=4+.
【点睛】
本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(2)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.
20、(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.
【解析】
试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,高为DE,可以求得DE的高度;
(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.
试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:,
∴,
设DE=5x米,则EC=12x米,
∴(5x)2+(12x)2=132,
解得:x=1,
∴5x=5,12x=12,
即DE=5米,EC=12米,
故斜坡CD的高度DE是5米;
(2)过点D作AB的垂线,垂足为H,设DH的长为x,
由题意可知∠BDH=45°,
∴BH=DH=x,DE=5,
在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,
∵tan64°=,
∴2=,
解得,x=29,AB=x+5=34,
即大楼AB的高度是34米.
21、解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4 =x2﹣1.
当x=﹣时,原式=(﹣)2﹣1=3﹣1=﹣2.
【解析】
应用整式的混合运算法则进行化简,最后代入x值求值.
22、38+12
【解析】
根据∠ABC=90°,AE=CE,EB=12,求出AC,根据Rt△ABC中,∠CAB=30°,BC=12,求出根据DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案.
【详解】
∵∠ABC=90°,AE=CE,EB=12,
∴EB=AE=CE=12,
∴AC=AE+CE=24,
∵在Rt△ABC中,∠CAB=30°,
∴BC=12,
∵DE⊥AC,AE=CE,
∴AD=DC,
在Rt△ADE中,由勾股定理得
∴DC=13,
∴四边形ABCD的周长=AB+BC+CD+DA=
【点睛】
此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长.
23、证明见解析.
【解析】
【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.
【详解】∵AB∥CD,∴∠A=∠D,
∵CE∥BF,∴∠AHB=∠DGC,
在∆ABH和∆DCG中,
,
∴∆ABH≌∆DCG(AAS),∴AH=DG,
∵AH=AG+GH,DG=DH+GH,∴AG=HD.
【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
24、(1)﹣10;(2)∠EFC=72°.
【解析】
(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.
【详解】
(1)原式=﹣1﹣18+9=﹣10;
(2)由折叠得:∠EFM=∠EFC,
∵∠EFM=2∠BFM,
∴设∠EFM=∠EFC=x,则有∠BFM=x,
∵∠MFB+∠MFE+∠EFC=180°,
∴x+x+x=180°,
解得:x=72°,
则∠EFC=72°.
【点睛】
本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.
相关试卷
这是一份2022年广东韶关曲江重点中学中考猜题数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,a的倒数是3,则a的值是等内容,欢迎下载使用。
这是一份2022届信阳市重点中学中考猜题数学试卷含解析,共19页。试卷主要包含了如图,将一正方形纸片沿图,实数 的相反数是,下列运算中,正确的是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。
这是一份2022届鹤岗市重点中学中考猜题数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中必然发生的事件是,下列运算正确的是等内容,欢迎下载使用。