2022年河南省漯河市郾城区重点中学中考三模数学试题含解析
展开
这是一份2022年河南省漯河市郾城区重点中学中考三模数学试题含解析,共21页。试卷主要包含了如图,已知直线l1等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为( )
A. B. C. D.
2.要使分式有意义,则x的取值应满足( )
A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2
3.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )
A.32° B.30° C.38° D.58°
4.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是( )
A. B. C. D.
5.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是( )
A. cm B.2 cm C.2cm D. cm
6.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是( )
A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2
7.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )
A.15° B.22.5° C.30° D.45°
8.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是( )
A.1 B. C. D.
9.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )
A. B. C. D.
10.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )
A.2 B.3 C.4 D.5
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在数轴上与表示的点距离最近的整数点所表示的数为_____.
12.阅读下面材料:
在数学课上,老师提出利用尺规作图完成下面问题:
已知:求作:的内切圆.
小明的作法如下:如图2,
作,的平分线BE和CF,两线相交于点O;
过点O作,垂足为点D;
点O为圆心,OD长为半径作所以,即为所求作的圆.
请回答:该尺规作图的依据是______.
13.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.
14.图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.
15.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.
16.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_____.
三、解答题(共8题,共72分)
17.(8分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
员工
管理人员
普通工作人员
人员结构
总经理
部门经理
科研人员
销售人员
高级技工
中级技工
勤杂工
员工数(名)
1
3
2
3
24
1
每人月工资(元)
21000
8400
2025
2200
1800
1600
950
请你根据上述内容,解答下列问题:该公司“高级技工”有 名;所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.
18.(8分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)
(1)求这7天内小申家每天用水量的平均数和中位数;
(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;
(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.
19.(8分)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F.
(1)求证:△GBE∽△GEF.
(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围.
(3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的长.
20.(8分)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.
(1)求证:DE是⊙O的切线;
(2)若AC∥DE,当AB=8,CE=2时,求AC的长.
21.(8分)计算:解不等式组,并写出它的所有整数解.
22.(10分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;
(2)化简:÷(1﹣)
23.(12分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴于D,若OB=1,OD=6,△AOB的面积为1.求一次函数与反比例函数的表达式;当x>0时,比较kx+b与的大小.
24.经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.
(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);
(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
∵①对顶角相等,故此选项正确;
②若a>b>0,则<,故此选项正确;
③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;
④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;
⑤边长相等的多边形内角不一定都相等,故此选项错误;
∴从中任选一个命题是真命题的概率为:.
故选:B.
2、D
【解析】
试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.
考点:分式有意义的条件.
3、A
【解析】
根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.
【详解】
解:∵∠B=58°,
∴∠AOC=116°,
∵OA=OC,
∴∠C=∠OAC=32°,
故选:A.
【点睛】
此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.
4、C
【解析】
过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.
【详解】
如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=x.∵平行四边形ABCD的周长为12,∴AB=(12-2x)=6-x,∴y=AD∙BE=(6-x)×x=﹣(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.
【点睛】
本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.
5、B
【解析】
由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.
【详解】
解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.
故选择B.
【点睛】
本题考查了圆锥的概念和弧长的计算.
6、D
【解析】
解:∵直线l1与x轴的交点为A(﹣1,0),
∴﹣1k+b=0,∴,解得:.
∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,
∴,
解得0<k<1.
故选D.
【点睛】
两条直线相交或平行问题;一次函数图象上点的坐标特征.
7、A
【解析】
试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.
考点:平行线的性质.
8、C
【解析】
由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);
∵CE∥AB,
∴△ECF∽△ADF,
得,
即DF=2CF,所以CF:CD=1:3,
故选C.
【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.
9、B
【解析】
根据等腰三角形两底角相等用α表示出∠A2B2O,依此类推即可得到结论.
【详解】
∵B1A2=B1B2,∠A1B1O=α,
∴∠A2B2O=α,
同理∠A3B3O=×α=α,
∠A4B4O=α,
∴∠AnBnO=α,
∴∠A10B10O=,
故选B.
【点睛】
本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.
10、C
【解析】
如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案.
【详解】
如图,连接BD、CD
在和中,
同理可得:
,即
为⊙O的直径
故选:C.
【点睛】
本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3
【解析】
≈3.317,且在3和4之间,∵3.317-3=0.317,4-3.317=0.683,
且0.683>0.317,∴距离整数点3最近.
12、到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.
【解析】
根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.
【详解】
解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;
故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.
【点睛】
此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.
13、1
【解析】
∵骑车的学生所占的百分比是×100%=35%,
∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
故答案为1.
14、1.
【解析】
先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.
解:设点D坐标为(a,b),
∵点D为OB的中点,
∴点B的坐标为(2a,2b),
∴k=4ab,
又∵AC⊥y轴,A在反比例函数图象上,
∴A的坐标为(4a,b),
∴AD=4a﹣a=3a,
∵△AOD的面积为3,
∴×3a×b=3,
∴ab=2,
∴k=4ab=4×2=1.
故答案为1
“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD的面积为1列出关系式是解题的关键.
15、.
【解析】
解:∵把x=1分别代入、,得y=1、y=,
∴A(1,1),B(1,).∴.
∵P为y轴上的任意一点,∴点P到直线BC的距离为1.
∴△PAB的面积.
故答案为:.
16、71
【解析】
分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.
详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则
x2=4y2+52,
∵△BCD的周长是30,
∴x+2y+5=30
则x=13,y=1.
∴这个风车的外围周长是:4(x+y)=4×19=71.
故答案是:71.
点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.
三、解答题(共8题,共72分)
17、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.
【解析】
(1)用总人数50减去其它部门的人数;
(2)根据中位数和众数的定义求解即可;
(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;
(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.
【详解】
(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
在这些数中1600元出现的次数最多,因而众数是1600元;
(3)这个经理的介绍不能反映该公司员工的月工资实际水平.
用1700元或1600元来介绍更合理些.
(4)(元).
能反映该公司员工的月工资实际水平.
18、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.
【解析】
试题分析:(1)根据平均数和中位数的定义求解可得;
(2)用洗衣服的水量除以第3天的用水总量即可得;
(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.
试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),
将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,
∴用水量的中位数为800升;
(2)×100%=12.5%.
答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;
(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.
19、(1)见解析;(2)y=4﹣x+(0≤x≤3);(3)当△AGQ与△CEP相似,线段AG的长为2或4﹣.
【解析】
(1)先判断出△BEF'≌△CEF,得出BF'=CF,EF'=EF,进而得出∠BGE=∠EGF,即可得出结论;
(2)先判断出△BEG∽△CFE进而得出CF=
,即可得出结论;
(3)分两种情况,①△AGQ∽△CEP时,判断出∠BGE=60°,即可求出BG;
②△AGQ∽△CPE时,判断出EG∥AC,进而得出△BEG∽△BCA即可得出BG,即可得出结论.
【详解】
(1)如图1,延长FE交AB的延长线于F',
∵点E是BC的中点,
∴BE=CE=2,
∵四边形ABCD是正方形,
∴AB∥CD,
∴∠F'=∠CFE,
在△BEF'和△CEF中,
,
∴△BEF'≌△CEF,
∴BF'=CF,EF'=EF,
∵∠GEF=90°,
∴GF'=GF,
∴∠BGE=∠EGF,
∵∠GBE=∠GEF=90°,
∴△GBE∽△GEF;
(2)∵∠FEG=90°,
∴∠BEG+∠CEF=90°,
∵∠BEG+∠BGE=90°,
∴∠BGE=∠CEF,
∵∠EBG=∠C=90°,
∴△BEG∽△CFE,
∴,
由(1)知,BE=CE=2,
∵AG=x,
∴BG=4﹣x,
∴,
∴CF=,
由(1)知,BF'=CF=,
由(1)知,GF'=GF=y,
∴y=GF'=BG+BF'=4﹣x+
当CF=4时,即:=4,
∴x=3,(0≤x≤3),
即:y关于x的函数表达式为y=4﹣x+(0≤x≤3);
(3)∵AC是正方形ABCD的对角线,
∴∠BAC=∠BCA=45°,
∵△AGQ与△CEP相似,
∴①△AGQ∽△CEP,
∴∠AGQ=∠CEP,
由(2)知,∠CEP=∠BGE,
∴∠AGQ=∠BGE,
由(1)知,∠BGE=∠FGE,
∴∠AGQ=∠BGQ=∠FGE,
∴∠AGQ+∠BGQ+∠FGE=180°,
∴∠BGE=60°,
∴∠BEG=30°,
在Rt△BEG中,BE=2,
∴BG=,
∴AG=AB﹣BG=4﹣,
②△AGQ∽△CPE,
∴∠AQG=∠CEP,
∵∠CEP=∠BGE=∠FGE,
∴∠AQG=∠FGE,
∴EG∥AC,
∴△BEG∽△BCA,
∴,
∴,
∴BG=2,
∴AG=AB﹣BG=2,
即:当△AGQ与△CEP相似,线段AG的长为2或4﹣.
【点睛】
本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.
20、(1)证明见解析;(2)AC的长为.
【解析】
(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.
【详解】
(1)如图,连接BD,
∵∠BAD=90°,
∴点O必在BD上,即:BD是直径,
∴∠BCD=90°,
∴∠DEC+∠CDE=90°.
∵∠DEC=∠BAC,
∴∠BAC+∠CDE=90°.
∵∠BAC=∠BDC,
∴∠BDC+∠CDE=90°,
∴∠BDE=90°,即:BD⊥DE.
∵点D在⊙O上,
∴DE是⊙O的切线;
(2)∵DE∥AC.
∵∠BDE=90°,
∴∠BFC=90°,
∴CB=AB=8,AF=CF=AC,
∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,
∴∠CDE=∠CBD.
∵∠DCE=∠BCD=90°,
∴△BCD∽△DCE,
∴,
∴,
∴CD=1.
在Rt△BCD中,BD==1,
同理:△CFD∽△BCD,
∴,
∴,
∴CF=,
∴AC=2C=.
【点睛】
考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.
21、(1);(1)0,1,1.
【解析】
(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果
(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可
【详解】
解:(1)原式=1﹣1× ,
=7﹣.
(1) ,
解不等式①得:x≤1,
解不等式②得:x>﹣1,
∴不等式组的解集是:﹣1<x≤1.
故不等式组的整数解是:0,1,1.
【点睛】
此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键
22、(1)5(2)
【解析】
(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.
【详解】
解:(1)原式=4﹣2+2+2+1﹣4×
=7﹣2
=5;
(2)原式=÷
=•
=.
【点睛】
本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.
23、 (1) ,;(2) 当0<x<6时,kx+b<,当x>6时,kx+b>
【解析】
(1)根据点A和点B的坐标求出一次函数的解析式,再求出C的坐标6,2)
,利用待定系数法求解即可求出解析式
(2)由C(6,2)分析图形可知,当0<x<6时,kx+b<,当x>6时,kx+b>
【详解】
(1)S△AOB= OA•OB=1,
∴OA=2,
∴点A的坐标是(0,﹣2),
∵B(1,0)
∴
∴
∴y=x﹣2.
当x=6时,y= ×6﹣2=2,∴C(6,2)
∴m=2×6=3.
∴y=.
(2)由C(6,2),观察图象可知:
当0<x<6时,kx+b<,当x>6时,kx+b>.
【点睛】
此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标
24、 (1)21米(2)见解析
【解析】
试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.
(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.
解:(1)在Rt△BAC中,∠ACB=68°,
∴AB=AC•tan68°≈100×2.1=21(米)
答:所测之处江的宽度约为21米.
(2)
①延长BA至C,测得AC做记录;②从C沿平行于河岸的方向走到D,测得CD,做记录;③测AE,做记录.根据△BAE∽△BCD,得到比例线段,从而解答
相关试卷
这是一份2024年河南省漯河市临颍县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河南省漯河市临颍县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份河南省漯河市郾城区2023-2024学年九年级上册期中数学试题(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。