2022年黑龙江省双鸭山市名校中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是( )
A. B.
C. D.
2.计算:的结果是( )
A. B.. C. D.
3.计算(-18)÷9的值是( )
A.-9 B.-27 C.-2 D.2
4.若正多边形的一个内角是150°,则该正多边形的边数是( )
A.6 B.12 C.16 D.18
5.不等式组的解集在数轴上可表示为( )
A. B. C. D.
6.-10-4的结果是( )
A.-7 B.7 C.-14 D.13
7.用配方法解方程时,可将方程变形为( )
A. B. C. D.
8.下列运算结果正确的是( )
A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
9.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为( )
A.y1<y2 B.y1>y2 C.y1≤y2 D.y1≥y2
10.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
11.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )
A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°
12.下列运算正确的是( )
A.a2•a3=a6 B.a3+a2=a5 C.(a2)4=a8 D.a3﹣a2=a
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;
14.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.
15.如图,点A在反比例函数y=(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_____.
16.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).
17.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____________.
18.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.
(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形.
(2)若AC=6,AB=10,连结AD,求⊙O的半径和AD的长.
20.(6分)如图,用红、蓝两种颜色随机地对A,B,C三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色,请用列举法(画树状图或列表)求A,C两个区域所涂颜色不相同的概率.
21.(6分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.
22.(8分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.求证:△ADF∽△ACG;若,求的值.
23.(8分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.
24.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).
(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,,)
25.(10分)如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.
(1)求证:四边形BDFG是矩形;
(2)若AE平分∠BAD,求tan∠BAE的值.
26.(12分) “绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):
1 1 2 3 2 3 2 3 3 4 3 3 4 3 3
5 3 4 3 4 4 5 4 5 3 4 3 4 5 6
(1)对以上数据进行整理、描述和分析:
①绘制如下的统计图,请补充完整;
②这30户家庭2018年4月份义务植树数量的平均数是______,众数是______;
(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有______户.
27.(12分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.
(1)说明△BEF是等腰三角形;
(2)求折痕EF的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.
【详解】
如图,点E即为所求作的点.故选:A.
【点睛】
本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.
2、B
【解析】
根据分式的运算法则即可求出答案.
【详解】
解:原式=
=
=
故选;B
【点睛】
本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.
3、C
【解析】
直接利用有理数的除法运算法则计算得出答案.
【详解】
解:(-18)÷9=-1.
故选:C.
【点睛】
此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.
4、B
【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,
故选B.
5、A
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
∵不等式①得:x>1,
解不等式②得:x≤2,
∴不等式组的解集为1<x≤2,
在数轴上表示为:,
故选A.
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
6、C
【解析】
解:-10-4=-1.故选C.
7、D
【解析】
配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.
【详解】
解:
故选D.
【点睛】
本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.
8、C
【解析】
根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
【详解】
A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
B、(-a2)•a3=-a5,此选项计算错误;
C、(-2x2)3=-8x6,此选项计算正确;
D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
故选:C.
【点睛】
本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
9、A
【解析】
分别把点A(−1,y1),点B(−1,y1)代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.
【详解】
解:∵点A(−1,y1),点B(−1,y1)是函数y=3x图象上的点,
∴y1=−6,y1=−3,
∵−3>−6,
∴y1<y1.
故选A.
【点睛】
本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.
10、D
【解析】
根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.
【详解】
在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分别为边AB,BC的中点,
∴AE=BF=BC,
在△ABF和△DAE中,
,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;
∵DE是△ABD的中线,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②错误;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴
∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正确;
设正方形ABCD的边长为2a,则BF=a,
在Rt△ABF中,AF=
∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴ ,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正确;
如图,过点M作MN⊥AB于N,
则
即
解得MN=,AN=,
∴NB=AB-AN=2a-=,
根据勾股定理,BM=
过点M作GH∥AB,过点O作OK⊥GH于K,
则OK=a-=,MK=-a=,
在Rt△MKO中,MO=
根据正方形的性质,BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正确;
综上所述,正确的结论有①③④⑤共4个.
故选:D
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.
11、C
【解析】
由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.
【详解】
A.∵∠3=∠A,
本选项不能判断AB∥CD,故A错误;
B.∵∠D=∠DCE,
∴AC∥BD.
本选项不能判断AB∥CD,故B错误;
C.∵∠1=∠2,
∴AB∥CD.
本选项能判断AB∥CD,故C正确;
D.∵∠D+∠ACD=180°,
∴AC∥BD.
故本选项不能判断AB∥CD,故D错误.
故选:C.
【点睛】
考查平行线的判定,掌握平行线的判定定理是解题的关键.
12、C
【解析】
根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.
【详解】
A、a2•a3=a5,故原题计算错误;
B、a3和a2不是同类项,不能合并,故原题计算错误;
C、(a2)4=a8,故原题计算正确;
D、a3和a2不是同类项,不能合并,故原题计算错误;
故选:C.
【点睛】
此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、>
【解析】
根据反比例函数的性质求解.
【详解】
反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,
而a<b<0,
所以y1>y2
故答案为:>
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.
14、2
【解析】
试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,
2πr=,解得r=2cm.
考点:圆锥侧面展开扇形与底面圆之间的关系.
15、1.
【解析】
根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长.
【详解】
解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AE⊥x轴于点E.
∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=,∴正方形OABC的面积=OA2=1.
故答案为1.
【点睛】
本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16、增大.
【解析】
根据二次函数的增减性可求得答案
【详解】
∵二次函数y=x2
的对称轴是y轴,开口方向向上,∴当y随x的增大而增大.
故答案为:增大.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
17、﹣24
【解析】
分析:
如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2S△COD=40=OA·CF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.
详解:
如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,
∵四边形ABCO是菱形,
∴AB∥CO,AO∥BC,
∵DE∥AO,
∴四边形AOED和四边形DECB都是平行四边形,
∴S△AOD=S△DOE,S△BCD=S△CDE,
∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,
∵tan∠AOC=,CF=4x,
∴OF=3x,
∴在Rt△COF中,由勾股定理可得OC=5x,
∴OA==OC=5x,
∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,
∴OF=,CF=,
∴点C的坐标为,
∵点C在反比例函数的图象上,
∴k=.
故答案为:-24.
点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.
18、54
【解析】
试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;
第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,
共有10个正方体,
∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,
∴搭成的大正方体的共有4×4×4=64个小正方体,
∴至少还需要64-10=54个小正方体.
【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2);3.
【解析】
试题分析:(1)连接OD、OE、ED.先证明△AOE是等边三角形,得到AE=AO=0D,则四边形AODE是平行四边形,然后由OA=OD证明四边形AODE是菱形;
(2)连接OD、DF.先由△OBD∽△ABC,求出⊙O的半径,然后证明△ADC∽△AFD,得出AD2=AC•AF,进而求出AD.
试题解析:(1)证明:如图1,连接OD、OE、ED.
∵BC与⊙O相切于一点D,
∴OD⊥BC,
∴∠ODB=90°=∠C,
∴OD∥AC,
∵∠B=30°,
∴∠A=60°,
∵OA=OE,
∴△AOE是等边三角形,
∴AE=AO=0D,
∴四边形AODE是平行四边形,
∵OA=OD,
∴四边形AODE是菱形.
(2)解:设⊙O的半径为r.
∵OD∥AC,
∴△OBD∽△ABC.
∴,即8r=6(8﹣r).
解得r=,
∴⊙O的半径为.
如图2,连接OD、DF.
∵OD∥AC,
∴∠DAC=∠ADO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠DAC=∠DAO,
∵AF是⊙O的直径,
∴∠ADF=90°=∠C,
∴△ADC∽△AFD,
∴,
∴AD2=AC•AF,
∵AC=6,AF=,
∴AD2=×6=45,
∴AD==3.
点评:本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、菱形的判定和性质以及相似三角形的判定和性质,是一个综合题,难度中等.熟练掌握相关图形的性质及判定是解本题的关键.
考点:切线的性质;菱形的判定与性质;相似三角形的判定与性质.
20、.
【解析】
试题分析:先根据题意画出树状图或列表,由图表求得所有等可能的结果与A,C两个区域所涂颜色不相同的的情况,利用概率公式求出概率.
试题解析:解:画树状图如答图:
∵共有8种不同的涂色方法,其中A,C两个区域所涂颜色不相同的的情况有4种,
∴P(A,C两个区域所涂颜色不相同)=.
考点:1.画树状图或列表法;2.概率.
21、(1)见解析(2)
【解析】
(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;
(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=从而可求出r的值.
【详解】
解:(1)连接OE,BE,
∵DE=EF,
∴=
∴∠OBE=∠DBE
∵OE=OB,
∴∠OEB=∠OBE
∴∠OEB=∠DBE,
∴OE∥BC
∵⊙O与边AC相切于点E,
∴OE⊥AC
∴BC⊥AC
∴∠C=90°
(2)在△ABC,∠C=90°,BC=3,sinA=,
∴AB=5,
设⊙O的半径为r,则AO=5﹣r,
在Rt△AOE中,sinA=
∴
∴
【点睛】
本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.
22、 (1)证明见解析;(2)1.
【解析】
(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.
(2)利用相似三角形的性质得到,由此即可证明.
【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,
∵,∴△ADF∽△ACG.
(2)解:∵△ADF∽△ACG,∴,
又∵,∴,
∴1.
23、(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).
【解析】
试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.
试题解析:(1)树状图如下图:
则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),
∴点M(x,y)在函数y=﹣的图象上的概率为:.
考点:列表法或树状图法求概率.
24、3.05米.
【解析】
延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
【详解】
延长FE交CB的延长线于M,过A作AG⊥FM于G,
在Rt△ABC中,tan∠ACB=,
∴AB=BC•tan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,
∴sin60°=,
∴FG=2.165,
∴DM=FG+GM﹣DF≈3.05米.
答:篮框D到地面的距离是3.05米.
考点:解直角三角形的应用.
25、(1)见解析;(2)
【解析】
(1)根据矩形的判定证明即可;
(2)根据平行四边形的性质和等边三角形的性质解答即可.
【详解】
证明:(1)∵BD⊥AB,EF⊥CD,
∴∠ABD=90°,∠EFD=90°,
根据题意,在▱ABCD中,AB∥CD,
∴∠BDC=∠ABD=90°,
∴BD∥GF,
∴四边形BDFG为平行四边形,
∵∠BDC=90°,
∴四边形BDFG为矩形;
(2)∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵AD∥BC,
∴∠BEA=∠DAE,
∴∠BAE=∠BEA,
∴BA=BE,
∵在Rt△BCD中,点E为BC边的中点,
∴BE=ED=EC,
∵在▱ABCD中,AB=CD,
∴△ECD为等边三角形,∠C=60°,
∴,
∴.
【点睛】
本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键.
26、 (1) 3.4棵、3棵;(2)1.
【解析】
(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;
(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.
【详解】
解:(1)①由已知数据知3棵的有12人、4棵的有8人,
补全图形如下:
②这30户家庭2018年4月份义务植树数量的平均数是(棵),众数为3棵,
故答案为:3.4棵、3棵;
(2)估计该小区采用这种形式的家庭有户,
故答案为:1.
【点睛】
此题考查条形统计图,加权平均数,众数,解题关键在于利用样本估计总体.
27、(1)见解析;(2).
【解析】
(1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.
【详解】
(1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.
∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;
(2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.
∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.
∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.
在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.
在Rt△EMF中,由勾股定理得:EF==.
故答案为.
【点睛】
本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.
广西市级名校2023年中考数学仿真试卷含解析: 这是一份广西市级名校2023年中考数学仿真试卷含解析,共15页。
黑龙江省齐齐哈尔市昂昂溪区市级名校2022年中考数学仿真试卷含解析: 这是一份黑龙江省齐齐哈尔市昂昂溪区市级名校2022年中考数学仿真试卷含解析,共17页。试卷主要包含了下列运算正确的是,下列运算结果是无理数的是等内容,欢迎下载使用。
2022年湖南省永州市名校中考数学仿真试卷含解析: 这是一份2022年湖南省永州市名校中考数学仿真试卷含解析,共24页。试卷主要包含了若,,则的值是等内容,欢迎下载使用。