2022年湖北省武汉市达标名校中考联考数学试题含解析
展开这是一份2022年湖北省武汉市达标名校中考联考数学试题含解析,共19页。试卷主要包含了7的相反数是,已知点A等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.下列图案中,是轴对称图形的是( )
A. B. C. D.
2.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是( )
A. B.
C. D.
3.已知直线与直线的交点在第一象限,则的取值范围是( )
A. B. C. D.
4.如图,在平面直角坐标系中,直线y=k1x+2(k1≠0)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若S△OBC=1,tan∠BOC=,则k2的值是( )
A.3 B.﹣ C.﹣3 D.﹣6
5.7的相反数是( )
A.7 B.-7 C. D.-
6.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是( )
A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD
7.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是( )
A.a>b B.a<b
C.a=b D.与m的值有关
8.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
9.下列各图中,∠1与∠2互为邻补角的是( )
A. B.
C. D.
10.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是( )
A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法判断
二、填空题(本大题共6个小题,每小题3分,共18分)
11.函数y=+中,自变量x的取值范围是_____.
12.如图,宽为的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则的值为__________.
13.因式分解:a2b-4ab+4b=______.
14.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)
15.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,则a+b+2c__________0(填“>”“=”或“<”).
16.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为_____人.
三、解答题(共8题,共72分)
17.(8分)如图,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作∠FAE=45°交射线BC于点E、交边DCN于点N,联结EF.
(1)当CM:CB=1:4时,求CF的长.
(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域.
(3)当△ABM∽△EFN时,求CM的长.
18.(8分)计算:()-1+()0+-2cos30°.
19.(8分)某村大力发展经济作物,其中果树种植已初具规模,该村果农小张种植了黄桃树和苹果树,为进一步优化种植结构,小张将前年和去年两种水果的销售情况进行了对比:前年黄桃的市场销售量为1000千克,销售均价为6元/千克,去年黄桃的市场销售量比前年减少了m%(m≠0),销售均价与前年相同;前年苹果的市场销售量为2000千克,销售均价为4元/千克,去年苹果的市场销售量比前年增加了2m%,但销售均价比前年减少了m%.如果去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,求m的值.
20.(8分)关于x的一元二次方程x2+(m-1)x-(2m+3)=1.
(1)求证:方程总有两个不相等的实数根;
(2)写出一个m的值,并求出此时方程的根.
21.(8分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).
请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量.
22.(10分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为 ;
②当AC=3,BC=4时,AD的长为 ;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
23.(12分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414
24.如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y= (x>0)的图象经过点B.
(1)求点B的坐标和反比例函数的关系式;
(2)如图2,将线段OA延长交y= (x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据轴对称图形的定义,逐一进行判断.
【详解】
A、C是中心对称图形,但不是轴对称图形;B是轴对称图形;D不是对称图形.
故选B.
【点睛】
本题考查的是轴对称图形的定义.
2、D
【解析】
试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得
.
故选D.
考点:由实际问题抽象出二元一次方程组
3、C
【解析】
根据题意画出图形,利用数形结合,即可得出答案.
【详解】
根据题意,画出图形,如图:
当时,两条直线无交点;
当时,两条直线的交点在第一象限.
故选:C.
【点睛】
本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
4、C
【解析】
如图,作CH⊥y轴于H.通过解直角三角形求出点C坐标即可解决问题.
【详解】
解:如图,作CH⊥y轴于H.
由题意B(0,2),
∵
∴CH=1,
∵tan∠BOC=
∴OH=3,
∴C(﹣1,3),
把点C(﹣1,3)代入,得到k2=﹣3,
故选C.
【点睛】
本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
5、B
【解析】
根据只有符号不同的两个数互为相反数,可得答案.
【详解】
7的相反数是−7,
故选:B.
【点睛】
此题考查相反数,解题关键在于掌握其定义.
6、D
【解析】
试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于B OC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.
考点:角平分线的性质;全等三角形的判定.
7、A
【解析】
【分析】根据一次函数性质:中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.由-2<0得,当x12时,y1>y2.
【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,
所以,y随x的增大而减小.
因为,1<4,
所以,a>b.
故选A
【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数中y与x的大小关系,关键看k的符号.
8、B
【解析】
先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:根据题意,得: ,
解不等式①,得:x>,
解不等式②,得:x>1,
∴不等式组的解集为x>1,
故选:B.
【点睛】
本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.
9、D
【解析】
根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.
故选D.
10、B
【解析】
比较OP与半径的大小即可判断.
【详解】
,,
,
点P在外,
故选B.
【点睛】
本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x≥﹣2且x≠1
【解析】
分析:
根据使分式和二次根式有意义的要求列出关于x的不等式组,解不等式组即可求得x的取值范围.
详解:
∵有意义,
∴ ,解得:且.
故答案为:且.
点睛:本题解题的关键是需注意:要使函数有意义,的取值需同时满足两个条件:和,二者缺一不可.
12、16
【解析】
设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+=,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答.
【详解】
解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=,m=a+b= a+=,因为,所以10<<20,解得: 故答案为:16.
【点睛】
本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.
13、
【解析】
先提公因式b,然后再运用完全平方公式进行分解即可.
【详解】
a2b﹣4ab+4b
=b(a2﹣4a+4)
=b(a﹣2)2,
故答案为b(a﹣2)2.
【点睛】
本题考查了利用提公因式法与公式法分解因式,熟练掌握完全平方公式的结构特征是解本题的关键.
14、(3a﹣b)
【解析】解:由题意可得,剩余金额为:(3a-b)元,故答案为:(3a-b).
点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.
15、<
【解析】
由抛物线开口向下,则a<0,抛物线与y轴交于y轴负半轴,则c<0,对称轴在y轴左侧,则b<0,因此可判断a+b+2c与0的大小
【详解】
∵抛物线开口向下
∴a<0
∵抛物线与y轴交于y轴负半轴,
∴c<0
∵对称轴在y轴左侧
∴﹣<0
∴b<0
∴a+b+2c<0
故答案为<.
【点睛】
本题考查了二次函数图象与系数的关系,正确利用图象得出正确信息是解题关键.
16、1
【解析】
试题解析:∵总人数为14÷28%=50(人),
∴该年级足球测试成绩为D等的人数为(人).
故答案为:1.
三、解答题(共8题,共72分)
17、 (1) CF=1;(2)y=,0≤x≤1;(3)CM=2﹣.
【解析】
(1)如图1中,作AH⊥BC于H.首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;
(2)在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,由△EAM∽△EBA,可得,推出AE2=EM•EB,由此构建函数关系式即可解决问题;
(3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.想办法证明CM=CN,MN=DN+HM即可解决问题;
【详解】
解:(1)如图1中,作AH⊥BC于H.
∵CD⊥BC,AD∥BC,
∴∠BCD=∠D=∠AHC=90°,
∴四边形AHCD是矩形,
∵AD=DC=1,
∴四边形AHCD是正方形,
∴AH=CH=CD=1,
∵∠B=45°,
∴AH=BH=1,BC=2,
∵CM=BC=,CM∥AD,
∴=,
∴=,
∴CF=1.
(2)如图1中,在Rt△AEH中,AE2=AH2+EH2=12+(1+y)2,
∵∠AEM=∠AEB,∠EAM=∠B,
∴△EAM∽△EBA,
∴=,
∴AE2=EM•EB,
∴1+(1+y)2=(x+y)(y+2),
∴y=,
∵2﹣2x≥0,
∴0≤x≤1.
(3)如图2中,作AH⊥BC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG.
则△ADN≌△AHG,△MAN≌△MAG,
∴MN=MG=HM+GH=HM+DN,
∵△ABM∽△EFN,
∴∠EFN=∠B=45°,
∴CF=CE,
∵四边形AHCD是正方形,
∴CH=CD=AH=AD,EH=DF,∠AHE=∠D=90°,
∴△AHE≌△ADF,
∴∠AEH=∠AFD,
∵∠AEH=∠DAN,∠AFD=∠HAM,
∴∠HAM=∠DAN,
∴△ADN≌△AHM,
∴DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,
∴x+x=1,
∴x=﹣1,
∴CM=2﹣.
【点睛】
本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明△EAM∽△EBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.
18、4+2.
【解析】
原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.
【详解】
原式=3+1+3-2×
=4+2.
19、m的值是12.1.
【解析】
根据去年黄桃和苹果的市场销售总金额与前年黄桃和苹果的市场销售总金额相同,可以列出相应的方程,从而可以求得m的值
【详解】
由题意可得,
1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)
解得,m1=0(舍去),m2=12.1,
即m的值是12.1.
【点睛】
本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,求出m的值,注意解答中是m%,最终求得的是m的值.
20、(1)见解析;(2)x1=1,x2=2
【解析】
(1)根据根的判别式列出关于m的不等式,求解可得;
(2)取m=-2,代入原方程,然后解方程即可.
【详解】
解:(1)根据题意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,
∵(m+2)2+4>1,
∴方程总有两个不相等的实数根;
(2)当m=-2时,由原方程得:x2-4x+2=1.
整理,得(x-1)(x-2)=1,
解得x1=1,x2=2.
【点睛】
本题主要考查根的判别式与韦达定理,一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:①当△>1时,方程有两个不相等的两个实数根;②当△=1时,方程有两个相等的两个实数根;③当△<1时,方程无实数根.
21、(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.
【解析】
(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;
(2)根据条形统计图求出捐4本的人数为,再画出图形即可;
(3)用360°乘以所捐图书是6本的人数所占比例可得;
(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.
【详解】
(1)∵捐 2 本的人数是 15 人,占 30%,
∴该班学生人数为 15÷30%=50 人;
(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;
补图如下;
(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆
心角为 360°×=36°.
(4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=,
∴全校 2000 名学生共捐 2000×=6280(本),
答:全校 2000 名学生共捐 6280 册书.
【点睛】
本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.
22、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.
【解析】
(1)①当AC=BC=2时,△ABC为等腰直角三角形;
②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.
【详解】
(1)若△CEF与△ABC相似.
①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,
此时D为AB边中点,AD=AC=.
②当AC=3,BC=4时,有两种情况:
(I)若CE:CF=3:4,如答图2所示,
∵CE:CF=AC:BC,∴EF∥BC.
由折叠性质可知,CD⊥EF,
∴CD⊥AB,即此时CD为AB边上的高.
在Rt△ABC中,AC=3,BC=4,∴BC=1.
∴cosA=.∴AD=AC•cosA=3×=.
(II)若CF:CE=3:4,如答图3所示.
∵△CEF∽△CAB,∴∠CEF=∠B.
由折叠性质可知,∠CEF+∠ECD=90°.
又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.
同理可得:∠B=∠FCD,CD=BD.∴AD=BD.
∴此时AD=AB=×1=.
综上所述,当AC=3,BC=4时,AD的长为或.
(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:
如图所示,连接CD,与EF交于点Q.
∵CD是Rt△ABC的中线
∴CD=DB=AB,
∴∠DCB=∠B.
由折叠性质可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ACB=∠ACB,
∴△CEF∽△CBA.
23、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
【解析】
根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.
【详解】
解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.
在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.
∵∠CBD=15°,∴BD=CD=2.
在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.
答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
【点睛】
本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.
24、(1)B(2,4),反比例函数的关系式为y=;(2)①直线BD的解析式为y=-x+6;②ED=2
【解析】
试题分析:(1)过点A作AP⊥x轴于点P,由平行四边形的性质可得BP=4, 可得B(2,4),把点B坐标代入反比例函数解析式中即可;
(2)①先求出直线OA的解析式,和反比例函数解析式联立,解方程组得到点D的坐标,再由待定系数法求得直线BD的解析式; ②先求得点E的坐标,过点D分别作x轴的垂线,垂足为G(4,0),由沟谷定理即可求得ED长度.
试题解析:(1)过点A作AP⊥x轴于点P,
则AP=1,OP=2,
又∵AB=OC=3,
∴B(2,4).,
∵反比例函数y= (x>0)的图象经过的B,
∴4=,
∴k=8.
∴反比例函数的关系式为y=;
(2)①由点A(2,1)可得直线OA的解析式为y=x.
解方程组,得,.
∵点D在第一象限,
∴D(4,2).
由B(2,4),点D(4,2)可得直线BD的解析式为y=-x+6;
②把y=0代入y=-x+6,解得x=6,
∴E(6,0),
过点D分别作x轴的垂线,垂足分别为G,则G(4,0),
由勾股定理可得:ED=.
点睛:本题考查一次函数、反比例函数、平行四边形等几何知识,综合性较强,要求学生有较强的分析问题和解决问题的能力.
相关试卷
这是一份湖北省鄂州市重点达标名校2022年中考联考数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份湖北省武汉市黄陂区重点达标名校2022年中考二模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份湖北省武汉市东湖高新区重点达标名校2022年中考联考数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。