2022年湖南省长沙市湖南师大附中高新实验中学中考数学押题试卷含解析
展开这是一份2022年湖南省长沙市湖南师大附中高新实验中学中考数学押题试卷含解析,共27页。试卷主要包含了不等式3x<2,汽车刹车后行驶的距离s等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.全球芯片制造已经进入10纳米到7纳米器件的量产时代. 中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米. 数据0.000000007用科学计数法表示为( )
A. B. C. D.
2.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )
A.2 B. C. D.2
3.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则
A.圆锥形冰淇淋纸套的底面半径为4cm
B.圆锥形冰淇淋纸套的底面半径为6cm
C.圆锥形冰淇淋纸套的高为
D.圆锥形冰淇淋纸套的高为
4.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )
A.π B. C.2π D.3π
5.已知抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),其部分图象如图所示,下列结论:
①抛物线过原点;②a﹣b+c<1;③当x<1时,y随x增大而增大;
④抛物线的顶点坐标为(2,b);⑤若ax2+bx+c=b,则b2﹣4ac=1.
其中正确的是( )
A.①②③ B.①④⑤ C.①②④ D.③④⑤
6.不等式3x<2(x+2)的解是( )
A.x>2 B.x<2 C.x>4 D.x<4
7.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )
A. B.4 C. D.
8.某班选举班干部,全班有1名同学都有选举权和被选举权,他们的编号分别为1,2,…,1.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.
如果令
其中i=1,2,…,1;j=1,2,…,1.则a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是( )
A.同意第1号或者第2号同学当选的人数
B.同时同意第1号和第2号同学当选的人数
C.不同意第1号或者第2号同学当选的人数
D.不同意第1号和第2号同学当选的人数
9.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t﹣5t2,汽车刹车后停下来前进的距离是( )
A.10m B.20m C.30m D.40m
10.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为( )
A.4 B.4 C.6 D.4
二、填空题(共7小题,每小题3分,满分21分)
11.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.
12.如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是_____.
13.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有人,则可列方程为__________.
14.计算:.
15.如图,在△ABC中,AB=AC,D、E、F分别为AB、BC、AC的中点,则下列结论:①△ADF≌△FEC;②四边形ADEF为菱形;③.其中正确的结论是____________.(填写所有正确结论的序号)
16.我国自主研发的某型号手机处理器采用10 nm工艺,已知1 nm=0.000000001 m,则10 nm用科学记数法可表示为_____m.
17.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连接BD,设AP=m.
(1)求证:∠BDP=90°.
(2)若m=4,求BE的长.
(3)在点P的整个运动过程中.
①当AF=3CF时,求出所有符合条件的m的值.
②当tan∠DBE=时,直接写出△CDP与△BDP面积比.
19.(5分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:
(1)求两人相遇时小明离家的距离;
(2)求小丽离距离图书馆500m时所用的时间.
20.(8分)如图1,在四边形ABCD中,AB=AD.∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.
图1 图2 图3
(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线. 易证△AFG ,故EF,BE,DF之间的数量关系为 ;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°. 若BD=1,EC=2,则DE的长为 .
21.(10分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
22.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
组别
分数段
频次
频率
A
60≤x<70
17
0.17
B
70≤x<80
30
a
C
80≤x<90
b
0.45
D
90≤x<100
8
0.08
请根据所给信息,解答以下问题:
(1)表中a=______,b=______;
(2)请计算扇形统计图中B组对应扇形的圆心角的度数;
(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
23.(12分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.
(1)求x的取值范围;
(2)若∠CPN=60°,求x的值;
(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留π).
24.(14分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,
n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.
(1) 若m=-8,n =4,直接写出E、F的坐标;
(2) 若直线EF的解析式为,求k的值;
(3) 若双曲线过EF的中点,直接写出tan∠EFO的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
数据0.000000007用科学记数法表示为7×10-1.
故选A.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
2、C
【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.
【详解】
解:∵OP平分∠AOB,∠AOB=60°,
∴∠AOP=∠COP=30°,
∵CP∥OA,
∴∠AOP=∠CPO,
∴∠COP=∠CPO,
∴OC=CP=2,
∵∠PCE=∠AOB=60°,PE⊥OB,
∴∠CPE=30°,
∴CE=CP=1,
∴PE=,
∴OP=2PE=2,
∵PD⊥OA,点M是OP的中点,
∴DM=OP=.
故选C.
考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.
3、C
【解析】
根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.
【详解】
解:半径为12cm,圆心角为的扇形弧长是:,
设圆锥的底面半径是rcm,
则,
解得:.
即这个圆锥形冰淇淋纸套的底面半径是2cm.
圆锥形冰淇淋纸套的高为.
故选:C.
【点睛】
本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:
圆锥的母线长等于侧面展开图的扇形半径;
圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.
4、D
【解析】
根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.
【详解】
∵△ABC 为等边三角形,
∴∠A=60°,
∴∠BOC=2∠A=120°,
∴图中阴影部分的面积= =3π.
故选D.
【点睛】
本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.
5、B
【解析】
由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;当x=﹣1时,y>1,得到a﹣b+c>1,结论②错误;根据抛物线的对称性得到结论③错误;将x=2代入二次函数解析式中结合4a+b+c=1,即可求出抛物线的顶点坐标,结论④正确;根据抛物线的顶点坐标为(2,b),判断⑤.
【详解】
解:①∵抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,与x轴的一个交点坐标为(4,1),
∴抛物线与x轴的另一交点坐标为(1,1),
∴抛物线过原点,结论①正确;
②∵当x=﹣1时,y>1,
∴a﹣b+c>1,结论②错误;
③当x<1时,y随x增大而减小,③错误;
④抛物线y=ax2+bx+c(a≠1)的对称轴为直线x=2,且抛物线过原点,
∴c=1,
∴b=﹣4a,c=1,
∴4a+b+c=1,
当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,
∴抛物线的顶点坐标为(2,b),结论④正确;
⑤∵抛物线的顶点坐标为(2,b),
∴ax2+bx+c=b时,b2﹣4ac=1,⑤正确;
综上所述,正确的结论有:①④⑤.
故选B.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
6、D
【解析】
不等式先展开再移项即可解答.
【详解】
解:不等式3x<2(x+2),
展开得:3x<2x+4,
移项得:3x-2x<4,
解之得:x<4.
故答案选D.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
7、B
【解析】
求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.
【详解】
解:∵AD⊥BC,BE⊥AC,
∴∠ADB=∠AEB=∠ADC=90°,
∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,
∵∠AFE=∠BFD,
∴∠EAF=∠FBD,
∵∠ADB=90°,∠ABC=45°,
∴∠BAD=45°=∠ABC,
∴AD=BD,
在△ADC和△BDF中 ,
∴△ADC≌△BDF,
∴DF=CD=4,
故选:B.
【点睛】
此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.
8、B
【解析】
先写出同意第1号同学当选的同学,再写出同意第2号同学当选的同学,那么同时同意1,2号同学当选的人数是他们对应相乘再相加.
【详解】
第1,2,3,……,1名同学是否同意第1号同学当选依次由a1,1,a2,1,a3,1,…,a1,1来确定,
是否同意第2号同学当选依次由a1,2,a2,2,a3,2,…,a1,2来确定,
∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的实际意义是同时同意第1号和第2号同学当选的人数,
故选B.
【点睛】
本题考查了推理应用题,题目比较新颖,是基础题.
9、B
【解析】
利用配方法求二次函数最值的方法解答即可.
【详解】
∵s=20t-5t2=-5(t-2)2+20,
∴汽车刹车后到停下来前进了20m.
故选B.
【点睛】
此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键.
10、B
【解析】
由已知条件可得,可得出,可求出AC的长.
【详解】
解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,
故选B.
【点睛】
本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
连接BD,易证△DAB是等边三角形,即可求得△ABD的高为,再证明△ABG≌△DBH,即可得四边形GBHD的面积等于△ABD的面积,由图中阴影部分的面积为S扇形EBF﹣S△ABD即可求解.
【详解】
如图,连接BD.
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中, ,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=﹣×2×=.
故答案是:.
【点睛】
本题考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形GBHD的面积等于△ABD的面积是解题关键.
12、
【解析】
计算出当P在直线上时a的值,再计算出当P在直线上时a的值,即可得答案.
【详解】
解:当P在直线上时,,
当P在直线上时,,
则.
故答案为
【点睛】
此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.
13、
【解析】
根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决
【详解】
解:由题意可设有人,
列出方程:
故答案为
【点睛】
本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.
14、3+
【解析】
本题涉及零指数幂、负指数幂、绝对值、特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
原式=2×+2﹣+1,
=2+2﹣+1,
=3+.
【点睛】
本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数、绝对值等考点的运算
15、①②③
【解析】
①根据三角形的中位线定理可得出AD=FE、AF=FC、DF=EC,进而可证出△ADF≌△FEC(SSS),结论①正确;
②根据三角形中位线定理可得出EF∥AB、EF=AD,进而可证出四边形ADEF为平行四边形,由AB=AC结合D、F分别为AB、AC的中点可得出AD=AF,进而可得出四边形ADEF为菱形,结论②正确;
③根据三角形中位线定理可得出DF∥BC、DF=BC,进而可得出△ADF∽△ABC,再利用相似三角形的性质可得出,结论③正确.此题得解.
【详解】
解:①∵D、E、F分别为AB、BC、AC的中点,
∴DE、DF、EF为△ABC的中位线,
∴AD=AB=FE,AF=AC=FC,DF=BC=EC.
在△ADF和△FEC中,
,
∴△ADF≌△FEC(SSS),结论①正确;
②∵E、F分别为BC、AC的中点,
∴EF为△ABC的中位线,
∴EF∥AB,EF=AB=AD,
∴四边形ADEF为平行四边形.
∵AB=AC,D、F分别为AB、AC的中点,
∴AD=AF,
∴四边形ADEF为菱形,结论②正确;
③∵D、F分别为AB、AC的中点,
∴DF为△ABC的中位线,
∴DF∥BC,DF=BC,
∴△ADF∽△ABC,
∴,结论③正确.
故答案为①②③.
【点睛】
本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键.
16、1×10﹣1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:10nm用科学记数法可表示为1×10-1m,
故答案为1×10-1.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
17、m≤1
【解析】
根据一元二次方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.
【详解】
解:由题意知,△=4﹣4(m﹣1)≥0,
∴m≤1,
故答案为:m≤1.
【点睛】
此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.
三、解答题(共7小题,满分69分)
18、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或.
【解析】
由知,再由知、,据此可得,证≌即可得;
易知四边形ABEF是矩形,设,可得,证≌得,在中,由,列方程求解可得答案;
分点C在AF的左侧和右侧两种情况求解:左侧时由知、、,在中,由可得关于m的方程,解之可得;右侧时,由知、、,利用勾股定理求解可得.作于点G,延长GD交BE于点H,由≌知,据此可得,再分点D在矩形内部和外部的情况求解可得.
【详解】
如图1,
,
,
,
、,
,
,
≌,
.
,,
,
,
,
四边形ABEF是矩形,
设,则,
,
,
,
,
≌,
,
≌,
,
在中,,即,
解得:,
的长为1.
如图1,当点C在AF的左侧时,
,则,
,
,,
在中,由可得,
解得:负值舍去;
如图2,当点C在AF的右侧时,
,
,
,
,,
在中,由可得,
解得:负值舍去;
综上,m的值为或;
如图3,过点D作于点G,延长GD交BE于点H,
≌,
,
又,且,
,
当点D在矩形ABEF的内部时,
由可设、,
则,
,
则;
如图4,当点D在矩形ABEF的外部时,
由可设、,
则,
,
则,
综上,与面积比为或.
【点睛】
本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点.
19、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分.
【解析】
(1)根据题意得出小明的速度,进而得出得出小明离家的距离;
(2)由(1)的结论得出小丽步行的速度,再列方程解答即可.
【详解】
解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),
300×5=1500(米),
∴两人相遇时小明离家的距离为1500米;
(2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),
设小丽离距离图书馆500m时所用的时间为x分,根据题意得,
1500+120(x﹣10)=4500﹣500,
解得x=.
答:小丽离距离图书馆500m时所用的时间为分.
【点睛】
本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.
20、(1)△AFE. EF=BE+DF.(2)BF=DF-BE,理由见解析;(3)
【解析】
试题分析:(1)先根据旋转得:计算 即点共线,再根据SAS证明△AFE≌△AFG,得EF=FG,可得结论EF=DF+DG=DF+AE;
(2)如图2,同理作辅助线:把△ABE绕点A逆时针旋转至△ADG,证明△EAF≌△GAF,得EF=FG,所以EF=DF−DG=DF−BE;
(3)如图3,同理作辅助线:把△ABD绕点A逆时针旋转至△ACG,证明△AED≌△AEG,得,先由勾股定理求的长,从而得结论.
试题解析:(1)思路梳理:
如图1,把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,即AB=AD,
由旋转得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,
∴∠FDG=∠ADF+∠ADG=+=,
即点F. D. G共线,
∵四边形ABCD为矩形,
∴∠BAD=,
∵∠EAF=,
∴
∴
∴
在△AFE和△AFG中,
∵
∴△AFE≌△AFG(SAS),
∴EF=FG,
∴EF=DF+DG=DF+AE;
故答案为:△AFE,EF=DF+AE;
(2)类比引申:
如图2,EF=DF−BE,理由是:
把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,则G在DC上,
由旋转得:BE=DG,∠DAG=∠BAE,AE=AG,
∵∠BAD=,
∴∠BAE+∠BAG=,
∵∠EAF=,
∴∠FAG=−=,
∴∠EAF=∠FAG=,
在△EAF和△GAF中,
∵
∴△EAF≌△GAF(SAS),
∴EF=FG,
∴EF=DF−DG=DF−BE;
(3)联想拓展:
如图3,把△ABD绕点A逆时针旋转至△ACG,可使AB与AC重合,连接EG,
由旋转得:AD=AG,∠BAD=∠CAG,BD=CG,
∵∠BAC=,AB=AC,
∴∠B=∠ACB=,
∴∠ACG=∠B=,
∴∠BCG=∠ACB+∠ACG=+=,
∵EC=2,CG=BD=1,
由勾股定理得:
∵∠BAD=∠CAG,∠BAC=,
∴∠DAG=,
∵∠BAD+∠EAC=,
∴∠CAG+∠EAC==∠EAG,
∴∠DAE=,
∴∠DAE=∠EAG=,
∵AE=AE,
∴△AED≌△AEG,
∴
21、(1);(2)1或9.
【解析】
试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m的值.
试题解析:
(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得,
解得,
所以一次函数的表达式为y=x+5.
(2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m.由得, x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,
解得m=1或9.
点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.
22、(1)0.3 ,45;(2)108°;(3).
【解析】
(1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;
(2)B组的频率乘以360°即可求得答案;
(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;
【详解】
(1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).
故答案为0.3,45;
(2)360°×0.3=108°.
答:扇形统计图中B组对应扇形的圆心角为108°.
(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:
∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
23、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.
【解析】
(1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围;
(1)根据等边三角形的判定和性质即可求解;
(3)连接MN、EF,分别交AC于B、H.此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可.
【详解】
(1)∵BC=1分米,AC=CN+PN=11分米,
∴AB=AC﹣BC=10分米,
∴x的取值范围是:0≤x≤10;
(1)∵CN=PN,∠CPN=60°,
∴△PCN是等边三角形,
∴CP=6分米,
∴AP=AC﹣PC=6分米,
即当∠CPN=60°时,x=6;
(3)连接MN、EF,分别交AC于B、H,
∵PM=PN=CM=CN,
∴四边形PNCM是菱形,
∴MN与PC互相垂直平分,AC是∠ECF的平分线,
PB==6-,
在Rt△MBP中,PM=6分米,
∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.
∵CE=CF,AC是∠ECF的平分线,
∴EH=HF,EF⊥AC,
∵∠ECH=∠MCB,∠EHC=∠MBC=90°,
∴△CMB∽△CEH,
∴=,
∴,
∴EH1=9•MB1=9•(6x﹣x1),
∴y=π•EH1=9π(6x﹣x1),
即y=﹣πx1+54πx.
【点睛】
此题主要考查了相似三角形的应用以及菱形的性质和二次函数的应用,难点是第(3)问,熟练运用菱形的性质、相似三角形的性质和二次函数的实际应用.
24、(1)E(-3,4)、F(-5,0);(2);(3).
【解析】
(1) 连接OE,BF,根据题意可知:设则根据勾股定理可得:即解得:即可求出点E的坐标,同理求出点F的坐标.
(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE,证明△BGE≌△OGF,证明四边形OEBF为菱形,令y=0,则,解得 , 根据菱形的性质得OF=OE=BE=BF=令y=n,则,解得 则CE=,在Rt△COE中, 根据勾股定理列出方程,即可求出点E的坐标,即可求出k的值;
(3) 设EB=EO=x,则CE=-m-x,在Rt△COE中,根据勾股定理得到(-m-x)2+n2=x2,解得,求出点E()、F(),根据中点公式得到EF的中点为(),将E()、()代入中,得,得m2=2n2
即可求出tan∠EFO=.
【详解】
解:(1)如图:连接OE,BF,
E(-3,4)、F(-5,0)
(2) 连接BF、OE,连接BO交EF于G由翻折可知:GO=GB,BE=OE
可证:△BGE≌△OGF(ASA)
∴BE=OF
∴四边形OEBF为菱形
令y=0,则,解得 ,∴OF=OE=BE=BF=
令y=n,则,解得 ∴CE=
在Rt△COE中,,
解得
∴E()
∴
(3) 设EB=EO=x,则CE=-m-x,
在Rt△COE中,(-m-x)2+n2=x2,解得
∴E()、F()
∴EF的中点为()
将E()、()代入中,得
,得m2=2n2
∴tan∠EFO=
【点睛】
考查矩形的折叠与性质,勾股定理,一次函数的图象与性质,待定系数法求反比例函数解析式,锐角三角函数等,综合性比较强,难度较大.
相关试卷
这是一份湖南省长沙市长郡中学2022年中考数学押题卷含解析,共25页。试卷主要包含了内角和为540°的多边形是等内容,欢迎下载使用。
这是一份2022年湖南省长沙市湖南师大附中联考中考数学押题试卷含解析,共21页。
这是一份2022届湖南省长沙市湖南师大附中高新实验中学中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,如图,已知,用尺规作图作,下列运算正确的是,下列计算,结果等于a4的是,下列计算正确的是等内容,欢迎下载使用。