|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年湖南省长沙市雨花区雅礼教育集团中考一模数学试题含解析
    立即下载
    加入资料篮
    2022年湖南省长沙市雨花区雅礼教育集团中考一模数学试题含解析01
    2022年湖南省长沙市雨花区雅礼教育集团中考一模数学试题含解析02
    2022年湖南省长沙市雨花区雅礼教育集团中考一模数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年湖南省长沙市雨花区雅礼教育集团中考一模数学试题含解析

    展开
    这是一份2022年湖南省长沙市雨花区雅礼教育集团中考一模数学试题含解析,共22页。试卷主要包含了|﹣3|=等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )

    A. B. C. D.
    2.﹣3的绝对值是(  )
    A.﹣3 B.3 C.- D.
    3.把6800000,用科学记数法表示为(  )
    A.6.8×105 B.6.8×106 C.6.8×107 D.6.8×108
    4.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是(  )

    A. B.
    C. D.
    5.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为  

    A. B. C.2 D.1
    6.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误的是( )

    A.小明中途休息用了20分钟
    B.小明休息前爬山的平均速度为每分钟70米
    C.小明在上述过程中所走的路程为6600米
    D.小明休息前爬山的平均速度大于休息后爬山的平均速度
    7.如图,圆O是等边三角形内切圆,则∠BOC的度数是(  )

    A.60° B.100° C.110° D.120°
    8.|﹣3|=(  )
    A. B.﹣ C.3 D.﹣3
    9.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为( )

    A.2 B.2 C. D.2
    10.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是(  )
    A.27 B.36 C.27或36 D.18
    二、填空题(共7小题,每小题3分,满分21分)
    11.若代数式有意义,则x的取值范围是__.
    12.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_____.
    13.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=_____度.

    14.抛物线y=﹣x2+4x﹣1的顶点坐标为 .
    15.有下列各式:①;②;③;④.其中,计算结果为分式的是_____.(填序号)
    16.如图,在中,于点,于点,为边的中点,连接,则下列结论:①,②,③为等边三角形,④当时,.请将正确结论的序号填在横线上__.

    17.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元.
    (1)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?
    根据题意,先填写下表,再完成本问解答:
    型号
    A型
    B型
    购进数量(盏)
    x
    _____
    购买费用(元)
    _____
    _____
    (2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
    19.(5分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:
    成绩
    频数
    频率
    优秀
    45
    b
    良好
    a
    0.3
    合格
    105
    0.35
    不合格
    60
    c
    (1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.

    20.(8分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.

    (1)求m,k的值;
    (2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.
    21.(10分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
    (1)概念理解:
    如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
    (1)问题探究:
    如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
    (3)应用拓展:
    如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.

    22.(10分)已知关于x的方程.
    (1)当该方程的一个根为1时,求a的值及该方程的另一根;
    (2)求证:不论a取何实数,该方程都有两个不相等的实数根.
    23.(12分)已知关于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.
    (1)求m的取值范围;
    (2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.
    24.(14分)计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.
    【详解】
    过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,
    ∵⊙O的周长等于6πcm,
    ∴2πr=6π,
    解得:r=3,
    ∴⊙O的半径为3cm,即OA=3cm,
    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=×360°=60°,OA=OB,
    ∴△OAB是等边三角形,
    ∴AB=OA=3cm,
    ∵OH⊥AB,
    ∴AH=AB,
    ∴AB=OA=3cm,
    ∴AH=cm,OH==cm,
    ∴S正六边形ABCDEF=6S△OAB=6××3×=(cm2).

    故选C.
    【点睛】
    此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.
    2、B
    【解析】
    根据负数的绝对值是它的相反数,可得出答案.
    【详解】
    根据绝对值的性质得:|-1|=1.
    故选B.
    【点睛】
    本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.
    3、B
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:把6800000用科学记数法表示为6.8×1.
    故选B.
    点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、A
    【解析】
    根据题意,将运动过程分成两段.分段讨论求出解析式即可.
    【详解】
    ∵BD=2,∠B=60°,
    ∴点D到AB距离为,
    当0≤x≤2时,
    y=;
    当2≤x≤4时,y=.
    根据函数解析式,A符合条件.
    故选A.
    【点睛】
    本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.
    5、A
    【解析】
    连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.
    【详解】
    连接OM、OD、OF,
    ∵正六边形ABCDEF内接于⊙O,M为EF的中点,
    ∴OM⊥OD,OM⊥EF,∠MFO=60°,
    ∴∠MOD=∠OMF=90°,
    ∴OM=OF•sin∠MFO=2×=,
    ∴MD=,
    故选A.

    【点睛】
    本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
    6、C
    【解析】
    根据图像,结合行程问题的数量关系逐项分析可得出答案.
    【详解】
    从图象来看,小明在第40分钟时开始休息,第60分钟时结束休息,故休息用了20分钟,A正确;
    小明休息前爬山的平均速度为:(米/分),B正确;
    小明在上述过程中所走的路程为3800米,C错误;
    小明休息前爬山的平均速度为:70米/分,大于休息后爬山的平均速度:米/分,D正确.
    故选C.
    考点:函数的图象、行程问题.
    7、D
    【解析】
    由三角形内切定义可知OB、OC是∠ABC、∠ACB的角平分线,所以可得到关系式∠OBC+∠OCB=(∠ABC+∠ACB),把对应数值代入即可求得∠BOC的值.
    【详解】
    解:∵△ABC是等边三角形,
    ∴∠A=∠ABC=∠ACB=60°,
    ∵圆O是等边三角形内切圆,
    ∴OB、OC是∠ABC、∠ACB的角平分线,
    ∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,
    ∴∠BOC=180°﹣60=120°,
    故选D.
    【点睛】
    此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=(∠ABC+∠ACB).
    8、C
    【解析】
    根据绝对值的定义解答即可.
    【详解】
    |-3|=3
    故选:C
    【点睛】
    本题考查的是绝对值,理解绝对值的定义是关键.
    9、B
    【解析】
    本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.
    10、B
    【解析】
    试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
    试题解析:分两种情况:
    (3)当其他两条边中有一个为3时,将x=3代入原方程,
    得:33-33×3+k=0
    解得:k=37
    将k=37代入原方程,
    得:x3-33x+37=0
    解得x=3或9
    3,3,9不能组成三角形,不符合题意舍去;
    (3)当3为底时,则其他两边相等,即△=0,
    此时:344-4k=0
    解得:k=3
    将k=3代入原方程,
    得:x3-33x+3=0
    解得:x=6
    3,6,6能够组成三角形,符合题意.
    故k的值为3.
    故选B.
    考点:3.等腰三角形的性质;3.一元二次方程的解.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x3
    【解析】
    由代数式有意义,得
    x-30,
    解得x3,
    故答案为: x3.
    【点睛】
    本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.
    12、4
    【解析】
    由三角形的重心的概念和性质,由AD、BE为△ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=×6=4.
    故答案为4.
    点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
    13、25
    【解析】
    ∵AC是⊙O的切线,
    ∴∠OAC=90°,
    ∵∠C=40°,
    ∴∠AOC=50°,
    ∵OB=OD,
    ∴∠ABD=∠BDO,
    ∵∠ABD+∠BDO=∠AOC,
    ∴∠ABD=25°,
    故答案为:25.
    14、(2,3)
    【解析】
    试题分析:利用配方法将抛物线的解析式y=﹣x2+4x﹣1转化为顶点式解析式y=﹣(x﹣2)2+3,然后求其顶点坐标为:(2,3).
    考点:二次函数的性质
    15、②④
    【解析】
    根据分式的定义,将每个式子计算后,即可求解.
    【详解】
    =1不是分式,=,=3不是分式,=故选②④.
    【点睛】
    本题考查分式的判断,解题的关键是清楚分式的定义.
    16、①③④
    【解析】
    ①根据直角三角形斜边上的中线等于斜边的一半可判断①;
    ②先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②;
    ③先根据直角三角形两锐角互余的性质求出∠ABM=∠ACN=30°,再根据三角形的内角和定理求出∠BCN+∠CBM=60°,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BPN+∠CPM=120°,从而得到∠MPN=60°,又由①得PM=PN,根据有一个角是60°的等腰三角形是等边三角形可判断③;
    ④当∠ABC=45°时,∠BCN=45°,进而判断④.
    【详解】
    ①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,
    ∴PM=BC,PN=BC,
    ∴PM=PN,正确;
    ②在△ABM与△ACN中,
    ∵∠A=∠A,∠AMB=∠ANC=90°,
    ∴△ABM∽△ACN,
    ∴,错误;
    ③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,
    ∴∠ABM=∠ACN=30°,
    在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,
    ∵点P是BC的中点,BM⊥AC,CN⊥AB,
    ∴PM=PN=PB=PC,
    ∴∠BPN=2∠BCN,∠CPM=2∠CBM,
    ∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,
    ∴∠MPN=60°,
    ∴△PMN是等边三角形,正确;
    ④当∠ABC=45°时,∵CN⊥AB于点N,
    ∴∠BNC=90°,∠BCN=45°,
    ∵P为BC中点,可得BC=PB=PC,故④正确.
    所以正确的选项有:①③④
    故答案为①③④
    【点睛】
    本题主要考查了直角三角形斜边的中线等于斜边的一半的性质,相似三角形、等边三角形、等腰直角三角形的判定与性质,等腰三角形三线合一的性质,仔细分析图形并熟练掌握性质是解题的关键.
    17、或1
    【解析】
    图1,∠B’MC=90°,B’与点A重合,M是BC的中点,所以BM=,
    图2,当∠MB’C=90°,∠A=90°,AB=AC,
    ∠C=45°,
    所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,
    所以BM=1.


    【详解】
    请在此输入详解!

    三、解答题(共7小题,满分69分)
    18、(1)30x, y,50y;(2)商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
    【解析】
    (1)设商场应购进A型台灯x盏,表示出B型台灯为y盏,然后根据“A,B两种新型节能台灯共100盏”、“进货款=A型台灯的进货款+B型台灯的进货款”列出方程组求解即可;
    (2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.
    【详解】
    解:(1)设商场应购进A型台灯x盏,则B型台灯为y盏,根据题意得:

    解得:.
    答:应购进A型台灯75盏,B型台灯2盏.
    故答案为30x;y;50y;
    (2)设商场应购进A型台灯x盏,销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x)=15x+1﹣20x=﹣5x+1,即y=﹣5x+1.
    ∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥2.
    ∵k=﹣5<0,y随x的增大而减小,∴x=2时,y取得最大值,为﹣5×2+1=1875(元).
    答:商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.
    【点睛】
    本题考查了一元一次方程的应用、二元一次方程组的应用以及一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.
    19、(1)300人(2)b=0.15,c=0.2;(3)
    【解析】
    分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;
    (2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;
    (3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.
    详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),
    答:该校初三学生共有300人;
    (2)由(1)得:a=300×0.3=90(人),
    b==0.15,
    c==0.2;
    如图所示:

    (3)画树形图得:

    ∵一共有12种情况,抽取到甲和乙的有2种,
    ∴P(抽到甲和乙)==.
    点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.
    20、(1)m=3,k=12;(2)或
    【解析】
    【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.
    【详解】
    解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=的图像上,
    ∴k=xy,
    ∴k=m(m+1)=(m+3)(m-1),
    ∴m2+m=m2+2m-3,解得m=3,
    ∴k=3×(3+1)=12.
    (2)∵m=3,
    ∴A(3,4),B(6,2).
    设直线AB的函数表达式为y=k′x+b(k′≠0),

    解得
    ∴直线AB的函数表达式为y=-x+6.
    (3)M(3,0),N(0,2)或M(-3,0),N(0,-2).
    解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.
    ∵由(1)知:A(3,4),B(6,2),
    ∴AP=PM=2,BP=PN=3,
    ∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).

    【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.
    21、(1)△ABC是“等高底”三角形;(1);(3)CD的值为,1,1.
    【解析】
    (1)过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:根据“等高底”三角形的概念即可判断.
    (1)点B是的重心,得到设 则
    根据勾股定理可得即可求出它们的比值.
    (3)分两种情况进行讨论:①当时和②当时.
    【详解】
    (1)△ABC是“等高底”三角形;
    理由:如图1,过A作AD⊥BC于D,则△ADC是直角三角形,∠ADC=90°,

    ∵∠ACB=30°,AC=6,

    ∴AD=BC=3,
    即△ABC是“等高底”三角形;
    (1)如图1,∵△ABC是“等高底”三角形,BC是“等底”,


    ∵△ABC关于BC所在直线的对称图形是 ,
    ∴∠ADC=90°,
    ∵点B是的重心,

    设 则
    由勾股定理得

    (3)①当时,
    Ⅰ.如图3,作AE⊥BC于E,DF⊥AC于F,

    ∵“等高底”△ABC的“等底”为BC,l1∥l1,l1与l1之间的距离为1,.

    ∴BE=1,即EC=4,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,
    ∴∠DCF=45°,

    ∵l1∥l1,

    ∴ 即


    Ⅱ.如图4,此时△ABC等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到,
    ∴是等腰直角三角形,

    ②当时,
    Ⅰ.如图5,此时△ABC是等腰直角三角形,

    ∵△ABC绕点C按顺时针方向旋转45°得到△A'B'C,


    Ⅱ.如图6,作于E,则



    ∴△ABC绕点C按顺时针方向旋转45°,得到时,点A'在直线l1上,
    ∴∥l1,即直线与l1无交点,
    综上所述,CD的值为
    【点睛】
    属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.
    22、(1),;(2)证明见解析.
    【解析】
    试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
    (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
    试题解析:(1)设方程的另一根为x1,
    ∵该方程的一个根为1,∴.解得.
    ∴a的值为,该方程的另一根为.
    (2)∵,
    ∴不论a取何实数,该方程都有两个不相等的实数根.
    考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
    23、(1)且,;(2)当m=1时,方程的整数根为0和3.
    【解析】
    (1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出的取值;
    (2)根据根与系数的关系得到x1+x2=3,,根据方程的两个根都是整数可得m=1或.结合(1)的结论可知m1.解方程即可.
    【详解】
    解:(1)∵关于x的分式方程的根为非负数,
    ∴且.
    又∵,且,
    ∴解得且.
    又∵方程为一元二次方程,
    ∴.
    综上可得:且,.
    (2)∵一元二次方程有两个整数根x1、x2,m为整数,
    ∴x1+x2=3,,
    ∴为整数,∴m=1或.
    又∵且,,
    ∴m1.
    当m=1时,原方程可化为.
    解得:,.
    ∴当m=1时,方程的整数根为0和3.
    【点睛】
    考查了解分式方程,一元二次方程根与系数的关系,解一元二次方程等,熟练掌握方程的解法是解题的关键.
    24、4
    【解析】
    直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.
    【详解】
    (﹣2)0+()﹣1+4cos30°﹣|4﹣|
    =1+3+4×﹣(4﹣2)
    =4+2﹣4+2
    =4.
    【点睛】
    此题主要考查了实数运算,正确化简各数是解题关键.

    相关试卷

    2024年湖南省长沙市雅礼教育集团中考一模数学试题解析版: 这是一份2024年湖南省长沙市雅礼教育集团中考一模数学试题解析版,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖南省长沙市雅礼集团中考数学预测卷(一): 这是一份2024年湖南省长沙市雅礼集团中考数学预测卷(一),文件包含2024年湖南省长沙市雅礼集团中考数学预测卷一解答版pdf、2024年湖南省长沙市雅礼集团中考数学预测卷一考试版pdf等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    2023年湖南省长沙市雨花区雅礼实验中学中考数学二模试卷(含解析): 这是一份2023年湖南省长沙市雨花区雅礼实验中学中考数学二模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map