2022年安徽省合肥市蜀山区重点中学中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )
A. B. C. D.
2.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
3.关于的不等式的解集如图所示,则的取值是
A.0 B. C. D.
4.下列各式属于最简二次根式的有( )
A. B. C. D.
5.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )
A.50° B.60° C.70° D.80°
6.若a+b=3,,则ab等于( )
A.2 B.1 C.﹣2 D.﹣1
7.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a的值为
A.75 B.89 C.103 D.139
8.若kb<0,则一次函数的图象一定经过( )
A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限
9.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为
A. B. C. D.
10.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为( )
A. B. C. D.
11.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )
A.1 B. C.-1 D.+1
12.的值是
A.±3 B.3 C.9 D.81
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于________厘米.
14.如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是__________.
15.因式分解:3x2-6xy+3y2=______.
16.国家游泳中心“水立方”是奥运会标志性建筑之一,其工程占地面积约为62800m2,将62800用科学记数法表示为_____.
17.关于的方程有两个不相等的实数根,那么的取值范围是__________.
18.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频
分组
频数
频率
0.5~50.5
0.1
50.5~
20
0.2
100.5~150.5
200.5
30
0.3
200.5~250.5
10
0.1
率分布表和频率分布直方图(如图).
(1)补全频率分布表;
(2)在频率分布直方图中,长方形ABCD的面积是 ;这次调查的样本容量是 ;
(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.
20.(6分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有名;
(2)补全条形统计图;
(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?
21.(6分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.
方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;
方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.
(1)若顾客选择方式一,则享受优惠的概率为 ;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.
22.(8分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.
(1)求证:DE⊥AG;
(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.
①在旋转过程中,当∠OAG′是直角时,求α的度数;
②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
23.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.
24.(10分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.
25.(10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:
(1)2017年“五•一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.
(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?
(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
26.(12分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.
(1)求点D的坐标.
(2)求点M的坐标(用含a的代数式表示).
(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.
27.(12分)已知平行四边形.
尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
连接CD,交MN于E,
∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
∴MN⊥CD,且CE=DE.∴CD=2CE.
∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.
∴.
∵在△CMN中,∠C=90°,MC=6,NC=,∴
∴.
∴.故选C.
2、A
【解析】
①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②正确.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;
③正确.只要证明DM垂直平分CF,即可证明;
④正确.设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,可得tan∠CAD===.
【详解】
如图,过D作DM∥BE交AC于N.
∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.
∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;
∵AD∥BC,∴△AEF∽△CBF,∴=.
∵AE=AD=BC,∴=,∴CF=2AF,故②正确;
∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF.
∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;
设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有 =,即b=a,∴tan∠CAD===.故④正确.
故选A.
【点睛】
本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.
3、D
【解析】
首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以=-1,解出即可;
【详解】
解:不等式,
解得x<,
由数轴可知,
所以,
解得;
故选:.
【点睛】
本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
4、B
【解析】
先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.
【详解】
A选项:,故不是最简二次根式,故A选项错误;
B选项:是最简二次根式,故B选项正确;
C选项:,故不是最简二次根式,故本选项错误;
D选项:,故不是最简二次根式,故D选项错误;
故选:B.
【点睛】
考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.
5、C
【解析】
解:∵OM=60海里,ON=80海里,MN=100海里,
∴OM2+ON2=MN2,
∴∠MON=90°,
∵∠EOM=20°,
∴∠NOF=180°﹣20°﹣90°=70°.
故选C.
【点睛】
本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.
6、B
【解析】
∵a+b=3,
∴(a+b)2=9
∴a2+2ab+b2=9
∵a2+b2=7
∴7+2ab=9,7+2ab=9
∴ab=1.
故选B.
考点:完全平方公式;整体代入.
7、A
【解析】
观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.
8、D
【解析】
根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.
【详解】
∵kb<0,
∴k、b异号。
①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;
②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;
综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。
故选:D
【点睛】
此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系
9、B
【解析】
将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.
【详解】
解:,
①②得:,即,
将代入①得:,即,
将,代入得:,
解得:.
故选:.
【点睛】
此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.
10、A
【解析】
由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.
【详解】
∵△ABC中,AC=BC,过点C作CD⊥AB,
∴AD=DB=6,∠BDC=∠ADC=90°,
∵AE=5,DE∥BC,
∴AC=2AE=10,∠EDC=∠BCD,
∴sin∠EDC=sin∠BCD=,
故选:A.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.
11、C
【解析】
【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.
【详解】∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴,
∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,
∴,
∴,
故选C.
【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.
12、C
【解析】
试题解析:∵
∴的值是3
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.
【详解】
∵线段c是线段a和线段b的比例中项,
∴,
解得(线段是正数,负值舍去),
∴,
故答案为:1.
【点睛】
本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.
14、1.
【解析】
如图,作BH⊥AC于H.由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由题意:21a×4a=40,求出a即可解决问题.
【详解】
如图,作BH⊥AC于H.
∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.
∵tan∠BOH,∴BH=4a,OH=3a,由题意:21a×4a=40,∴a=1,∴AC=1.
故答案为:1.
【点睛】
本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.
15、3(x﹣y)1
【解析】
试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.
考点:提公因式法与公式法的综合运用
16、6.28×1.
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
62800用科学记数法表示为6.28×1.
故答案为6.28×1.
【点睛】
此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
17、且
【解析】
分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.
详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,
∴△>1且m≠1,
∴4-12m>1且m≠1,
∴m<且m≠1,
故答案为:m<且m≠1.
点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
18、1
【解析】
解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.
点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、⑴表格中依次填10,100.5,25,0.25,150.5,1;
⑵0.25,100;
⑶1000×(0.3+0.1+0.05)=450(名).
【解析】
(1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5; 0.5-50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=100×0.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)先求得消费在150元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议..
【详解】
解:填表如下:
(2)长方形ABCD的面积为0.25,样本容量是100;
提出这项建议的人数人.
【点睛】
本题考查了频数分布表,样本估计总体、样本容量等知识.注意频数分布表中总的频率之和是1.
20、(1)1000 (2)200 (3)54° (4)4000人
【解析】
试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;
(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;
(3)利用360°乘以对应的比例即可求解;
(4)利用20000除以调查的总人数,然后乘以200即可求解.
试题解析:(1)被调查的同学的人数是400÷40%=1000(名);
(2)剩少量的人数是1000-400-250-150=200(名),
;
(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;
(4)×200=4000(人).
答:校20000名学生一餐浪费的食物可供4000人食用一餐.
【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
21、(1);(2).
【解析】
(1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;
(2)根据题意可以画出相应的树状图,从而可以求得相应的概率.
【详解】
解:(1)由题意可得,
顾客选择方式一,则享受优惠的概率为:,
故答案为:;
(2)树状图如下图所示,
则顾客享受折上折优惠的概率是:,
即顾客享受折上折优惠的概率是.
【点睛】
本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.
22、(1)见解析;(1)30°或150°,的长最大值为,此时.
【解析】
(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;
(1)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;
②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=+1,此时α=315°.
【详解】
(1)如图1,延长ED交AG于点H,
∵点O是正方形ABCD两对角线的交点,
∴OA=OD,OA⊥OD,
∵OG=OE,
在△AOG和△DOE中,
,
∴△AOG≌△DOE,
∴∠AGO=∠DEO,
∵∠AGO+∠GAO=90°,
∴∠GAO+∠DEO=90°,
∴∠AHE=90°,
即DE⊥AG;
(1)①在旋转过程中,∠OAG′成为直角有两种情况:
(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,
∵OA=OD=OG=OG′,
∴在Rt△OAG′中,sin∠AG′O==,
∴∠AG′O=30°,
∵OA⊥OD,OA⊥AG′,
∴OD∥AG′,
∴∠DOG′=∠AG′O=30°∘,
即α=30°;
(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,
同理可求∠BOG′=30°,
∴α=180°−30°=150°.
综上所述,当∠OAG′=90°时,α=30°或150°.
②如图3,当旋转到A. O、F′在一条直线上时,AF′的长最大,
∵正方形ABCD的边长为1,
∴OA=OD=OC=OB=,
∵OG=1OD,
∴OG′=OG=,
∴OF′=1,
∴AF′=AO+OF′=+1,
∵∠COE′=45°,
∴此时α=315°.
【点睛】
本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.
23、(1)30;(2)当x=3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
【解析】
(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;
(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;
(3)分两种情形列出方程即可解决问题.
【详解】
解:(1)根据图象信息:货车的速度V货=,
∵轿车到达乙地的时间为货车出发后4.5小时,
∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),
此时,货车距乙地的路程为:300﹣270=30(千米).
所以轿车到达乙地后,货车距乙地30千米.
故答案为30;
(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
∵C(2.5,80),D(4.5,300)在其图象上,
,解得,
∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);
易得OA:y=60x,
,解得,
∴当x=3.9时,轿车与货车相遇;
(3)当x=2.5时,y货=150,两车相距=150﹣80=70>20,
由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,
解得x=3.5或4.3小时.
答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
【点睛】
本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.
24、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D点坐标为(1,2)或(4,﹣25).
【解析】
(1)设交点式y=a(x+1)(x﹣),展开得到﹣a=3,然后求出a即可得到抛物线解析式;
(2)作AE⊥BC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出∠ACE即可;
(3)作BH⊥CD于H,如图2,设H(m,n),证明Rt△BCH∽Rt△ACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接着通过解方程组得到H(,﹣)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可.
【详解】
(1)设抛物线解析式为y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x2+x+3;
(2)作AE⊥BC于E,如图1,当x=0时,y=﹣2x2+x+3=3,则C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==
AE•BC=OC•AB,∴AE==.
在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;
(3)作BH⊥CD于H,如图2,设H(m,n).
∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①
m2+(n﹣3)2=()2=,②
②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.
当n=﹣时,m=2n+=,此时H(,﹣),易得直线CD的解析式为y=﹣7x+3,解方程组得:或,此时D点坐标为(4,﹣25);
当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=﹣x+3,解方程组得:或,此时D点坐标为(1,2).
综上所述:D点坐标为(1,2)或(4,﹣25).
【点睛】
本题是二次函数综合题.熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
25、(1)50,108°,补图见解析;(2)9.6;(3).
【解析】
(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;
(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;
(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.
【详解】
解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),
A景点所对应的圆心角的度数是:30%×360°=108°,
B景点接待游客数为:50×24%=12(万人),
补全条形统计图如下:
(2)∵E景点接待游客数所占的百分比为:×100%=12%,
∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);
(3)画树状图可得:
∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,
∴同时选择去同一个景点的概率=.
【点睛】
本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.
26、(1)D(2,2);(2);(3)
【解析】
(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.
(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.
(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AE⊥OD,可证△AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tan∠OMB=tan∠ONA,得到比例式,代入数值即可求得a的值.
【详解】
(1)当x=0时,,
∴A点的坐标为(0,2)
∵
∴顶点B的坐标为:(1,2-a),对称轴为x= 1,
∵点A与点D关于对称轴对称
∴D点的坐标为:(2,2)
(2)设直线BD的解析式为:y=kx+b
把B(1,2-a)D(2,2)代入得:
,解得:
∴直线BD的解析式为:y=ax+2-2a
当y=0时,ax+2-2a=0,解得:x=
∴M点的坐标为:
(3)由D(2,2)可得:直线OD解析式为:y=x
设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得:
解得:
∴直线AB的解析式为y= -ax+2
联立成方程组: ,解得:
∴N点的坐标为:()
ON=()
过A点作AE⊥OD于E点,则△AOE为等腰直角三角形.
∵OA=2
∴OE=AE=,EN=ON-OE=()-=)
∵M,C(1,0), B(1,2-a)
∴MC=,BE=2-a
∵∠OMB=∠ONA
∴tan∠OMB=tan∠ONA
∴,即
解得:a=或
∵抛物线开口向下,故a<0,
∴ a=舍去,
【点睛】
本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.
27、(1)见解析;(2)见解析.
【解析】
试题分析:(1)作∠BAD的平分线交直线BC于点E,交DC延长线于点F即可;
(2)先根据平行四边形的性质得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,据此可得出结论.
试题解析:(1)如图所示,AF即为所求;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.
∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.
考点:作图—基本作图;平行四边形的性质.
2024年安徽省合肥市蜀山区中考模拟数学试卷: 这是一份2024年安徽省合肥市蜀山区中考模拟数学试卷,共3页。
2024年安徽省合肥市蜀山区中考模拟数学试卷: 这是一份2024年安徽省合肥市蜀山区中考模拟数学试卷,共3页。
2024年安徽省合肥市蜀山区中考数学二模试卷(含解析): 这是一份2024年安徽省合肥市蜀山区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。