2022年安徽省庐江县中考考前最后一卷数学试卷含解析
展开
这是一份2022年安徽省庐江县中考考前最后一卷数学试卷含解析,共20页。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( )
A.8.1×106 B.8.1×105 C.81×105 D.81×104
2.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
A. B. C. D.
3.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
4.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=( )
A.141° B.144° C.147° D.150°
5.下列命题是真命题的个数有( )
①菱形的对角线互相垂直;
②平分弦的直径垂直于弦;
③若点(5,﹣5)是反比例函数y=图象上的一点,则k=﹣25;
④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.
A.1个 B.2个 C.3个 D.4个
6.如图是某个几何体的三视图,该几何体是( )
A.圆锥 B.四棱锥 C.圆柱 D.四棱柱
7.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是( )
A.6 B.3.5 C.2.5 D.1
8.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是( )
A. B. C. D.
9.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )
A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×109
10.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )
A.2π﹣ B.π+ C.π+2 D.2π﹣2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=____.
12.在实数范围内分解因式: =_________
13.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D为AB的中点,将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,则D′B长为_____.
14.下面是“利用直角三角形作矩形”尺规作图的过程.
已知:如图1,在Rt△ABC中,∠ABC=90°.
求作:矩形ABCD.
小明的作法如下:
如图2,(1)分别以点A、C为圆心,大于AC同样长为半径作弧,两弧交于点E、F;
(2)作直线EF,直线EF交AC于点O;
(3)作射线BO,在BO上截取OD,使得OD=OB;
(4)连接AD,CD.
∴四边形ABCD就是所求作的矩形.
老师说,“小明的作法正确.”
请回答,小明作图的依据是:__________________________________________________.
15.如果x3nym+4与﹣3x6y2n是同类项,那么mn的值为_____.
16.计算:=________.
三、解答题(共8题,共72分)
17.(8分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.
18.(8分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)
星期
一
二
三
四
五
每股涨跌(元)
+2
﹣1.4
+0.9
﹣1.8
+0.5
根据上表回答问题:
(1)星期二收盘时,该股票每股多少元?
(2)周内该股票收盘时的最高价,最低价分别是多少?
(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?
19.(8分)将二次函数的解析式化为的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.
20.(8分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.
21.(8分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).
(1)求抛物y=x2+bx+c线的解析式.
(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.
(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).
22.(10分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
23.(12分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
24.如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
810 000=8.1×1.
故选B.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、D
【解析】
过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.
【详解】
过C点作CD⊥AB,垂足为D.
根据旋转性质可知,∠B′=∠B.
在Rt△BCD中,tanB=,
∴tanB′=tanB=.
故选D.
【点睛】
本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.
3、D
【解析】
试题解析:根据题意得=30%,解得n=30,
所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
故选D.
考点:利用频率估计概率.
4、B
【解析】
先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.
【详解】
(6﹣2)×180°÷6=120°,
(5﹣2)×180°÷5=108°,
∠APG=(6﹣2)×180°﹣120°×3﹣108°×2
=720°﹣360°﹣216°
=144°,
故选B.
【点睛】
本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).
5、C
【解析】
根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.
【详解】
解:①菱形的对角线互相垂直是真命题;
②平分弦(非直径)的直径垂直于弦,是假命题;
③若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;
④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;
故选C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.
6、B
【解析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状
【详解】
解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱.
故选B.
【点睛】
本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.
7、C
【解析】
因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.
【详解】
(1)将这组数据从小到大的顺序排列为2,3,4,5,x,
处于中间位置的数是4,
∴中位数是4,
平均数为(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列顺序;
(2)将这组数据从小到大的顺序排列后2,3,4,x,5,
中位数是4,
此时平均数是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列顺序;
(3)将这组数据从小到大的顺序排列后2,3,x,4,5,
中位数是x,
平均数(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列顺序;
(4)将这组数据从小到大的顺序排列后2,x,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,不符合排列顺序;
(5)将这组数据从小到大的顺序排列后x,2,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,符合排列顺序;
∴x的值为6、3.5或1.
故选C.
【点睛】
考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
8、D
【解析】
分析:根据相似三角形的性质进行解答即可.
详解:∵在平行四边形ABCD中,
∴AE∥CD,
∴△EAF∽△CDF,
∵
∴
∴
∵AF∥BC,
∴△EAF∽△EBC,
∴
故选D.
点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.
9、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:数字338 600 000用科学记数法可简洁表示为3.386×108
故选:A
【点睛】
本题考查科学记数法—表示较大的数.
10、D
【解析】
分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.
详解:连接CD.
∵∠C=90°,AC=2,AB=4,
∴BC==2.
∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC
=
=
.
故选:D.
点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC是解答本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、5
【解析】
试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.
考点:直角三角形斜边上的中线.
12、2(x+)(x-).
【解析】
先提取公因式2后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.
【详解】
2x2-6=2(x2-3)=2(x+)(x-).
故答案为2(x+)(x-).
【点睛】
本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
13、.
【解析】
试题分析:
解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,
∴AB=5,
∵点D为AB的中点,
∴CD=AD=BD=AB=2.5,
过D′作D′E⊥BC,
∵将△ACD绕着点C逆时针旋转,使点A落在CB的延长线A′处,点D落在点D′处,
∴CD′=AD=A′D′,
∴D′E==1.5,
∵A′E=CE=2,BC=3,
∴BE=1,
∴BD′=,
故答案为.
考点:旋转的性质.
14、到线段两端点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个角为90°的平行四边形为矩形
【解析】
先利用作法判定OA=OC,OD=OB,则根据平行四边形的判定方法判断四边形ABCD为平行四边形,然后根据矩形的判定方法判断四边形ABCD为矩形.
【详解】
解:由作法得EF垂直平分AC,则OA=OC,
而OD=OB,
所以四边形ABCD为平行四边形,
而∠ABC=90°,
所以四边形ABCD为矩形.
故答案为到线段两段点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个内角为90°的平行四边形为矩形.
【点睛】
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
15、0
【解析】
根据同类项的特点,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.
故答案为0
点睛:此题主要考查了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.
16、.
【解析】
根据异分母分式加减法法则计算即可.
【详解】
原式.
故答案为:.
【点睛】
本题考查了分式的加减,关键是掌握分式加减的计算法则.
三、解答题(共8题,共72分)
17、(1)证明见解析(2)3
【解析】
试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;
(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.
试题解析:(1)∵四边形ABCD是平行四边形,
∴DC∥AB,即DF∥EB.
又∵DF=BE,
∴四边形DEBF是平行四边形.
∵DE⊥AB,
∴∠EDB=90°.
∴四边形DEBF是矩形.
(2)∵四边形DEBF是矩形,
∴DE=BF=4,BD=DF.
∵DE⊥AB,
∴AD===1.
∵DC∥AB,
∴∠DFA=∠FAB.
∵AF平分∠DAB,
∴∠DAF=∠FAB.
∴∠DAF=∠DFA.
∴DF=AD=1.
∴BE=1.
∴AB=AE+BE=3+1=2.
∴S□ABCD=AB·BF=2×4=3.
18、(1)25.6元;(2)收盘最高价为27元/股,收盘最低价为24.7元/股;(3)-51元,亏损51元.
【解析】
试题分析: (1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可.
(2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低.
(3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可.
试题解析:
(1)星期二收盘价为25+2−1.4=25.6(元/股)
答:该股票每股25.6元.
(2)收盘最高价为25+2=27(元/股)
收盘最低价为25+2−1.45+0.9−1.8=24.7(元/股)
答:收盘最高价为27元/股,收盘最低价为24.7元/股.
(3)(25.2-25) ×1000-5‰×1000×(25.2+25)=200-251=-51(元)
答:小王的本次收益为-51元.
19、开口方向:向上;点坐标:(-1,-3);称轴:直线.
【解析】
将二次函数一般式化为顶点式,再根据a的值即可确定该函数图像的开口方向、顶点坐标和对称轴.
【详解】
解:,
,
,
∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线.
【点睛】
熟练掌握将一般式化为顶点式是解题关键.
20、-
【解析】
先化简,再解不等式组确定x的值,最后代入求值即可.
【详解】
(﹣)÷,
=÷
=
解不等式组,
可得:﹣2<x≤2,
∴x=﹣1,0,1,2,
∵x=﹣1,0,1时,分式无意义,
∴x=2,
∴原式==﹣.
21、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析;(3)点、的坐标分别为、或、或、.
【解析】
(1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式
(2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.
(3)由题得出tanBAO=,分情况讨论求得F,H坐标.
【详解】
(1)把点、代入得,
解得,,
∴抛物线的解析式为.
(2)由得,∴顶点的坐标为,
把代入得解得,∴直线解析式为,
设点,代入得,∴得,
设点,代入得,∴得,
由于直线与轴、轴分别交于点、
∴易得、,
∴,
∴,∵点在直线上,
∴,
∴,即,
∵,
∴以点为圆心,半径长为4的圆与直线相离.
(3)点、的坐标分别为、或、或、.
C(-1,-1),A(0,6),B(1,3)
可得tanBAO=,
情况1:tanCF1M= = , CF1=9,
M F1=6,H1F1=5, F1(8,8),H1(3,3);
情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);
情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3与H2重合).
【点睛】
本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.
22、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.
【解析】
(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.
(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.
(3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可
【详解】
解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.
(2)△BDF∽△CED∽△DEF,证明如下:
∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,
又∵∠EDF=∠B,
∴∠BFD=∠CDE.
∵AB=AC,
∴∠B=∠C.
∴△BDF∽△CED.
∴.
∵BD=CD,
∴,即.
又∵∠C=∠EDF,
∴△CED∽△DEF.
∴△BDF∽△CED∽△DEF.
(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.
∵AB=AC,D是BC的中点,
∴AD⊥BC,BD=BC=1.
在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,
∴AD=2.
∴S△ABC=•BC•AD=×3×2=42,
S△DEF=S△ABC=×42=3.
又∵•AD•BD=•AB•DH,
∴.
∵△BDF∽△DEF,
∴∠DFB=∠EFD.
∵DH⊥BF,DG⊥EF,
∴∠DHF=∠DGF.
又∵DF=DF,
∴△DHF≌△DGF(AAS).
∴DH=DG=.
∵S△DEF=·EF·DG=·EF·=3,
∴EF=4.
【点睛】
本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.
23、(1)见解析(2)见解析
【解析】
试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;
(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.
试题分析:(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD.
∵BE∥DF,BE=DF,
∴四边形BFDE是平行四边形.
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠DFA=∠FAB.
在Rt△BCF中,由勾股定理,得
BC===5,
∴AD=BC=DF=5,
∴∠DAF=∠DFA,
∴∠DAF=∠FAB,
即AF平分∠DAB.
【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.
24、7.6 m.
【解析】
利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长
【详解】
解:由题意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40 m.
∵在Rt△BDC中,tan∠BDC=.
∴BC=CD=40 m.
∵在Rt△ADC中,tan∠ADC=.
∴.
∴AB≈7.6(m).
答:旗杆AB的高度约为7.6 m.
【点睛】
此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.
相关试卷
这是一份庐江县重点名校2022年中考数学考前最后一卷含解析,共20页。试卷主要包含了的负倒数是等内容,欢迎下载使用。
这是一份安徽省天长市2021-2022学年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算3–,﹣2018的相反数是等内容,欢迎下载使用。
这是一份2022年安徽省天长市龙岗中学中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,sin45°的值等于,计算-5x2-3x2的结果是等内容,欢迎下载使用。