2022年安徽省宿州十一中学中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,已知△ABC中,∠A=75°,则∠1+∠2=( )
A.335°° B.255° C.155° D.150°
2.下列事件中必然发生的事件是( )
A.一个图形平移后所得的图形与原来的图形不全等
B.不等式的两边同时乘以一个数,结果仍是不等式
C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品
D.随意翻到一本书的某页,这页的页码一定是偶数
3.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )
A. B.
C. D.
4.如图,直线a,b被直线c所截,若a∥b,∠1=50°,∠3=120°,则∠2的度数为( )
A.80° B.70° C.60° D.50°
5.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是( )
A. B. C. D.
6.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是( )
A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=4
7.已知,则的值是
A.60 B.64 C.66 D.72
8.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为( )
A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4
9.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为( )
A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米
10.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿 B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为( )
A. B. C. D.
11.如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是( )
A.-2 B.2 C.-4 D.4
12.如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于( )
A.60° B.35° C.25° D.20°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.
14.计算:_______________.
15.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg
16.当x=_________时,分式的值为零.
17.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.
18.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,那么GE=_______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)
x
销售量y(件)
销售玩具获得利润w(元)
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
20.(6分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);
甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?
21.(6分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.求反比例函数y=的表达式;求点B的坐标;求△OAP的面积.
22.(8分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙O相交于点F.若的长为,则图中阴影部分的面积为_____.
23.(8分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
24.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
(3)当∠ABE的正切值是 时,求AB的长.
25.(10分)计算:﹣(﹣2)2+|﹣3|﹣20180×
26.(12分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, ≈1.7)
27.(12分)如图,在平行四边形ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,点F为BE上一点,连接AF,∠AFE=∠D.
(1)求证:∠BAF=∠CBE;
(2)若AD=5,AB=8,sinD=.求证:AF=BF.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
∵∠A+∠B+∠C=180°,∠A=75°,
∴∠B+∠C=180°﹣∠A=105°.
∵∠1+∠2+∠B+∠C=360°,
∴∠1+∠2=360°﹣105°=255°.
故选B.
点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.
2、C
【解析】
直接利用随机事件、必然事件、不可能事件分别分析得出答案.
【详解】
A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;
B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;
C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;
D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;
故选C.
【点睛】
此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.
3、C
【解析】
根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.
【详解】
解:∵DE∥BC,
∴=,BD≠BC,
∴≠,选项A不正确;
∵DE∥BC,EF∥AB,
∴=,EF=BD,=,
∵≠,
∴≠,选项B不正确;
∵EF∥AB,
∴=,选项C正确;
∵DE∥BC,EF∥AB,
∴=,=,CE≠AE,
∴≠,选项D不正确;
故选C.
【点睛】
本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.
4、B
【解析】
直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案.
【详解】
解:
∵a∥b,∠1=50°,
∴∠4=50°,
∵∠3=120°,
∴∠2+∠4=120°,
∴∠2=120°-50°=70°.
故选B.
【点睛】
此题主要考查了平行线的性质,正确得出∠4的度数是解题关键.
5、A
【解析】
试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.
考点:中心对称图形;轴对称图形.
6、D
【解析】
由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.
【详解】
解:∵△OAB绕O点逆时针旋转60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
故选D.
【点睛】
本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
7、A
【解析】
将代入原式,计算可得.
【详解】
解:当时,
原式
,
故选A.
【点睛】
本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.
8、A
【解析】
先将抛物线解析式化为顶点式,左加右减的原则即可.
【详解】
,
当向左平移2个单位长度,再向上平移3个单位长度,得
.
故选A.
【点睛】
本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;
9、D
【解析】
解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.
故选D.
点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0).
10、C
【解析】
先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.
【详解】
由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则
当0<x≤2,y=x,
当2<x≤4,y=1,
由以上分析可知,这个分段函数的图象是C.
故选C.
11、C
【解析】
根据反比例函数k的几何意义,求出k的值即可解决问题
【详解】
解:∵过点P作PQ⊥x轴于点Q,△OPQ的面积为2,
∴||=2,
∵k<0,
∴k=-1.
故选:C.
【点睛】
本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
12、C
【解析】
先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C的度数即可.
【详解】
∵BC∥DE,
∴∠CBE=∠E=60°,
∵∠A=35°,∠C+∠A=∠CBE,
∴∠C=∠CBE﹣∠C=60°﹣35°=25°,
故选C.
【点睛】
本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、3﹣1
【解析】
通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.
【详解】
如图,当Q在对角线BD上时,BQ最小.
连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.
∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).
故答案为3﹣1.
【点睛】
本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.
14、
【解析】
先把化简为2,再合并同类二次根式即可得解.
【详解】
2-=.
故答案为.
【点睛】
本题考查了二次根式的运算,正确对二次根式进行化简是关键.
15、20
【解析】
设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg
16、2
【解析】
根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算
即可.
【详解】
解:依题意得:2﹣x=1且2x+2≠1.
解得x=2,
故答案为2.
【点睛】
本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键.
17、
【解析】
如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.
【详解】
解:如图,设AH=x,GB=y,
∵EH∥BC,
,
∵FG∥AC,
,
由①②可得x=,y=2,
∴AC=,BC=7,
∴S△ABC=,
故答案为.
【点睛】
本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.
18、
【解析】
过点E作EF⊥BC交BC于点F,分别求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再结合△BGD∽△BEF即可.
【详解】
过点E作EF⊥BC交BC于点F.
∵AB=AC, AD为BC的中线 ∴AD⊥BC ∴EF为△ADC的中位线.
又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2
∴BF=6
∴在Rt△BEF中BE==,
又∵△BGD∽△BEF
∴,即BG=.
GE=BE-BG=
故答案为.
【点睛】
本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1) 1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.
【解析】
(1)由销售单价每涨1元,就会少售出10件玩具得
销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;
(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.
【详解】
解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,
销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
故答案为: 1000﹣x,﹣10x2+1300x﹣1.
(2)﹣10x2+1300x﹣1=10000
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润.
(3)根据题意得,
解得:44≤x≤46 .
w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65,
∴当44≤x≤46时,y随x增大而增大.
∴当x=46时,W最大值=8640(元).
答:商场销售该品牌玩具获得的最大利润为8640元.
20、 (1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4).
【解析】
(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.
【详解】
解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)
(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;
将甲的数据相加可得10+15+20+10+5=60;
由题意可知159.5﹣164.5这一部分所对应的人数为20人,
所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,
故答案为120°;
(3)根据中位数的求法,将甲的数据从小到大依次排列,
可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1.
故答案为160或1;
(4)列树状图得:
P(一男一女)==.
21、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=1.
【解析】
(1)将点A的坐标代入解析式求解可得;
(2)利用勾股定理求得AB=OA=1,由AB∥x轴即可得点B的坐标;
(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.
【详解】
(1)将点A(4,3)代入y=,得:k=12,
则反比例函数解析式为y=;
(2)如图,过点A作AC⊥x轴于点C,
则OC=4、AC=3,
∴OA==1,
∵AB∥x轴,且AB=OA=1,
∴点B的坐标为(9,3);
(3)∵点B坐标为(9,3),
∴OB所在直线解析式为y=x,
由可得点P坐标为(6,2),(负值舍去),
过点P作PD⊥x轴,延长DP交AB于点E,
则点E坐标为(6,3),
∴AE=2、PE=1、PD=2,
则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=1.
【点睛】
本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.
22、S阴影=2﹣.
【解析】
由切线的性质和平行四边形的性质得到BA⊥AC,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE,根据弧长公式求出弧长,得到半径,即可求出结果.
【详解】
如图,连接AC,∵CD与⊙A相切,
∴CD⊥AC,
在平行四边形ABCD中,∵AB=DC,AB∥CD∥BC,
∴BA⊥AC,∵AB=AC,
∴∠ACB=∠B=45°,
∵AD∥BC,
∴∠FAE=∠B=45°,
∴∠DAC=∠ACB=45°=∠FAE,
∴
∴的长度为
解得R=2,
S阴=S△ACD-S扇形=
【点睛】
此题主要考查圆内的面积计算,解题的关键是熟知平行四边形的性质、切线的性质、弧长计算及扇形面积的计算.
23、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.
【解析】
(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;
(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.
【详解】
(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,
依题意有 ,
解得:x=30,
经检验,x=30是原方程的解,
x+10=30+10=40,
答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;
(2)设他们可购买y棵乙种树苗,依题意有
30×(1﹣10%)(50﹣y)+40y≤1500,
解得y≤11,
∵y为整数,
∴y最大为11,
答:他们最多可购买11棵乙种树苗.
【点睛】
本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.
24、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.
【解析】
试题分析:(1)根据等腰直角三角形的性质,求得∠DAC=∠ACD=45°,进而根据两角对应相等的两三角形相似,可得△CEF∽△CAE,然后根据相似三角形的性质和勾股定理可求解;
(2)根据相似三角形的判定与性质,由三角形的周长比可求解;
(3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由∠ABE的正切值求解.
试题解析:(1)∵AD=CD.
∴∠DAC=∠ACD=45°,
∵∠CEB=45°,
∴∠DAC=∠CEB,
∵∠ECA=∠ECA,
∴△CEF∽△CAE,
∴,
在Rt△CDE中,根据勾股定理得,CE= ,
∵CA=,
∴,
∴CF=;
(2)∵∠CFE=∠BFA,∠CEB=∠CAB,
∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,
∵∠ABF=180°﹣∠CAB﹣∠AFB,
∴∠ECA=∠ABF,
∵∠CAE=∠ABF=45°,
∴△CEA∽△BFA,
∴(0<x<2),
(3)由(2)知,△CEA∽△BFA,
∴,
∴,
∴AB=x+2,
∵∠ABE的正切值是,
∴tan∠ABE=,
∴x=,
∴AB=x+2=.
25、﹣1
【解析】
根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.
【详解】
原式=﹣1+3﹣1×3=﹣1.
【点睛】
本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.
26、潜艇C离开海平面的下潜深度约为308米
【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.
试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,
设AD=x,则BD=BA+AD=1000+x,
在Rt△ACD中,CD= = =
在Rt△BCD中,BD=CD•tan68°,
∴325+x= •tan68°
解得:x≈100米,
∴潜艇C离开海平面的下潜深度为100米.
点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.
视频
27、(1)见解析;(2)2.
【解析】
(1)根据相似三角形的判定,易证△ABF∽△BEC,从而可以证明∠BAF=∠CBE成立;
(2)根据锐角三角函数和三角形的相似可以求得AF的长
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,AD=BC,
∴∠D+∠C=180°,∠ABF=∠BEC,
∵∠AFB+∠AFE=180°,∠AFE=∠D,
∴∠C=∠AFB,
∴△ABF∽△BEC,
∴∠BAF=∠CBE;
(2)∵AE⊥DC,AD=5,AB=8,sin∠D=,
∴AE=4,DE=3
∴EC=5
∵AE⊥DC,AB∥DC,
∴∠AED=∠BAE=90°,
在Rt△ABE中,根据勾股定理得:BE=
∵BC=AD=5,
由(1)得:△ABF∽△BEC,
∴ ==
即 ==
解得:AF=BF=2
【点睛】
本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答
2024年安徽省宿州市宿城第一初级中学中考三模数学试题(含解析): 这是一份2024年安徽省宿州市宿城第一初级中学中考三模数学试题(含解析),共24页。试卷主要包含了化简的结果正确的是,如图,是的外接圆,等内容,欢迎下载使用。
2023年安徽省宿州十一中中考数学模拟试卷(含解析): 这是一份2023年安徽省宿州十一中中考数学模拟试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年安徽省宿州市第十一中学中考模拟数学试题(含答案): 这是一份2023年安徽省宿州市第十一中学中考模拟数学试题(含答案),共13页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。