四川省宜宾市三年(2020-2022)中考数学真题分类汇编-02+填空题知识点分类
展开四川省宜宾市三年(2020-2022)中考数学真题分类汇编-02 填空题知识点分类
一.规律型:数字的变化类(共1小题)
1.(2020•宜宾)定义:分数(m,n为正整数且互为质数)的连分数(其中a1,a2,a3,…,为整数,且等式右边的每个分数的分子都为1),记作+++…,
例如:======,的连分数为,记作+++,则 ++.
二.提公因式法与公式法的综合运用(共3小题)
2.(2022•宜宾)分解因式:x3﹣4x= .
3.(2021•黄石)分解因式:a3﹣2a2+a= .
4.(2020•玉林)分解因式:a3﹣a= .
三.根与系数的关系(共1小题)
5.(2020•宜宾)已知一元二次方程x2+2x﹣8=0的两根为x1、x2,则+2x1x2+= .
四.由实际问题抽象出一元二次方程(共1小题)
6.(2021•宜宾)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程 .
五.解一元一次不等式(共1小题)
7.(2021•宜宾)不等式2x﹣1>1的解集是 .
六.解一元一次不等式组(共1小题)
8.(2022•宜宾)不等式组的解集为 .
七.反比例函数系数k的几何意义(共1小题)
9.(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为 .
八.三角形的面积(共1小题)
10.(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c=4:3:2,则用以上给出的公式求得这个三角形的面积为 .
九.矩形的性质(共1小题)
11.(2021•宜宾)如图,在矩形ABCD中,AD=AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N运动过程中,则以下结论正确的是 .(写出所有正确结论的序号)
①点M、N的运动速度不相等;
②存在某一时刻使S△AMN=S△MON;
③S△AMN逐渐减小;
④MN2=BM2+DN2.
一十.圆周角定理(共1小题)
12.(2020•宜宾)如图,A、B、C是⊙O上的三点,若△OBC是等边三角形,则cos∠A= .
一十一.三角形的内切圆与内心(共1小题)
13.(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为 .
一十二.轨迹(共1小题)
14.(2021•宜宾)如图,⊙O的直径AB=4,P为⊙O上的动点,连结AP,Q为AP的中点,若点P在圆上运动一周,则点Q经过的路径长是 .
一十三.轴对称-最短路线问题(共1小题)
15.(2020•宜宾)如图,四边形ABCD中,DA⊥AB,CB⊥AB,AD=3,AB=5,BC=2,P是边AB上的动点,则PC+PD的最小值是 .
一十四.平行线分线段成比例(共1小题)
16.(2020•宜宾)在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分∠ABC交AC于点E,连接CD交BE于点O.若AC=8,BC=6,则OE的长是 .
一十五.相似三角形的判定与性质(共1小题)
17.(2022•宜宾)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若BC=4,AF=2,CF=3,则EF= .
一十六.方差(共1小题)
18.(2021•宜宾)从甲、乙、丙三人中选一人参加环保知识决赛,经过两轮测试,他们的平均成绩都是88.9,方差分别是s甲2=2.25,s乙2=1.81,s丙2=3.42,你认为最适合参加决赛的选手是 (填“甲”或“乙”或“丙”).
参考答案与试题解析
一.规律型:数字的变化类(共1小题)
1.(2020•宜宾)定义:分数(m,n为正整数且互为质数)的连分数(其中a1,a2,a3,…,为整数,且等式右边的每个分数的分子都为1),记作+++…,
例如:======,的连分数为,记作+++,则 ++.
【解答】解:++====.
故答案为:.
二.提公因式法与公式法的综合运用(共3小题)
2.(2022•宜宾)分解因式:x3﹣4x= x(x+2)(x﹣2) .
【解答】解:x3﹣4x,
=x(x2﹣4),
=x(x+2)(x﹣2).
故答案为:x(x+2)(x﹣2).
3.(2021•黄石)分解因式:a3﹣2a2+a= a(a﹣1)2 .
【解答】解:a3﹣2a2+a
=a(a2﹣2a+1)
=a(a﹣1)2.
故答案为:a(a﹣1)2.
4.(2020•玉林)分解因式:a3﹣a= a(a+1)(a﹣1) .
【解答】解:a3﹣a,
=a(a2﹣1),
=a(a+1)(a﹣1).
故答案为:a(a+1)(a﹣1).
三.根与系数的关系(共1小题)
5.(2020•宜宾)已知一元二次方程x2+2x﹣8=0的两根为x1、x2,则+2x1x2+= ﹣ .
【解答】解:∵一元二次方程x2+2x﹣8=0的两根为x1、x2,
∴x1+x2=﹣2,x1•x2=﹣8,
∴+2x1x2+
=2x1x2+
=2×(﹣8)+
=﹣16+
=﹣,
故答案为:﹣.
四.由实际问题抽象出一元二次方程(共1小题)
6.(2021•宜宾)据统计,2021年第一季度宜宾市实现地区生产总值约652亿元,若使该市第三季度实现地区生产总值960亿元,设该市第二、三季度地区生产总值平均增长率为x,则可列方程 652(1+x)2=960 .
【解答】解:设该市第二、三季度地区生产总值平均增长率为x,
依题意得:652(1+x)2=960.
故答案为:652(1+x)2=960.
五.解一元一次不等式(共1小题)
7.(2021•宜宾)不等式2x﹣1>1的解集是 x>1 .
【解答】解:解不等式2x﹣1>1得,2x>2,解得x>1.
六.解一元一次不等式组(共1小题)
8.(2022•宜宾)不等式组的解集为 ﹣4<x≤﹣1 .
【解答】解:,
解不等式①,得:x≤﹣1,
解不等式②,得:x>﹣4,
故原不等式组的解集为﹣4<x≤﹣1,
故答案为:﹣4<x≤﹣1.
七.反比例函数系数k的几何意义(共1小题)
9.(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为 9 .
【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,
∵△OMN是边长为10的等边三角形,
∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°,
设OC=b,则BC=,OB=2b,
∴BM=OM﹣OB=10﹣2b,B(b,b),
∵∠M=60°,AB⊥OM,
∴AM=2BM=20﹣4b,
∴AN=MN﹣AM=10﹣(20﹣4b)=4b﹣10,
∵∠AND=60°,
∴DN==2b﹣5,AD=AN=2b﹣5,
∴OD=ON﹣DN=15﹣2b,
∴A(15﹣2b,2b﹣5),
∵A、B两点都在反比例函数y=(x>0)的图象上,
∴k=(15﹣2b)(2b﹣5)=b•b,
解得b=3或5,
当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,
∴b=3,
∴k=b•b=9,
故答案为:9.
八.三角形的面积(共1小题)
10.(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c=4:3:2,则用以上给出的公式求得这个三角形的面积为 3 .
【解答】解:根据a:b:c=4:3:2,设a=4k,b=3k,c=2k,
则4k+3k+2k=18,
解得:k=2,
∴a=4k=4×2=8,b=3k=3×2=6,c=2k=2×2=4,
∴S===3,
故答案为:3.
九.矩形的性质(共1小题)
11.(2021•宜宾)如图,在矩形ABCD中,AD=AB,对角线相交于点O,动点M从点B向点A运动(到点A即停止),点N是AD上一动点,且满足∠MON=90°,连结MN.在点M、N运动过程中,则以下结论正确的是 ①②③④ .(写出所有正确结论的序号)
①点M、N的运动速度不相等;
②存在某一时刻使S△AMN=S△MON;
③S△AMN逐渐减小;
④MN2=BM2+DN2.
【解答】解:如图,当M与B点重合时,此时NO⊥BD,
∵在矩形ABCD中,AD=AB,
∴∠ADB=∠DAC=30°,
∴∠AOD=180°﹣30°﹣30°=120°,
∴∠NAO=∠AOD﹣∠NOD=120°﹣90°=30°,
∴∠DAO=∠NOA=30°,
∴AN=ON=DN•sin30°=DN,
∵AN+DN=AD,
∴AN=AD,
当M点运动到M'位置时,此时OM'⊥AB,N点运动到了N',
∵AC和BD是矩形ABCD的对角线,
∴M点运动的距离是MM'=AB,
N点运动的距离是NN'===AD,
又∵AD=AB,
∴NN'=×AB=AB=MM',
∴N点的运动速度是M点的,
故①正确,
当M在M'位置时,
∵∠OM'A=90°,∠N'AB=90°,∠M'ON'=90°,
∴四边形AM'ON'是矩形,
∴此时S△AMN=S△MON,
故②正确,
令AB=1,则AD=,设BM=x,则N点运动的距离为x,
∴AN=AD+x=+x,
∴S△AMN=AM•AN=(AB﹣BM)•AN=(1﹣x)(+x)=﹣x2,
∵0≤x≤1,在x的取值范围内函数﹣x2的图象随x增加而减小,
∴S△AMN逐渐减小,
故③正确,
∵MN2=(AB﹣BM)2+(AD﹣DN)2=AB2﹣2AB•BM+BM2+AD2﹣2AD•DN+DN2=(AB2﹣2AB•BM+3AB2﹣2•DN)+BM2+DN2=(4AB2﹣2AB•BM﹣2AB•DN)+BM2+DN2,
∵AN=AD+BM=AB+BM,
∴DN=AD﹣AN=AB﹣(AB+BM)=AB﹣BM,
∵2AB•DN=2AB×(AB﹣BM)=4AB2﹣2AB•BM,
∴MN2=(4AB2﹣2AB•BM﹣2AB•DN)+BM2+DN2=BM2+DN2,
故④正确,
方法二判定④:如图2,延长MO交CD于M',
∵∠MOB=∠M'OD,OB=OD,∠DBA=∠BDC,
∴△OMB≌△OM'D(ASA),
∴BM=DM',OM=OM',
连接NM',
∵NO⊥MM',
则MN=NM',
∵NM'2=DN2+DM'2,
∴MN2=BM2+DN2,
故④正确,
故答案为:①②③④.
一十.圆周角定理(共1小题)
12.(2020•宜宾)如图,A、B、C是⊙O上的三点,若△OBC是等边三角形,则cos∠A= .
【解答】解:∵△OBC是等边三角形,
∴∠BOC=60°,
∴∠A=30°,
∴cos∠A=cos30°=.
故答案为:.
一十一.三角形的内切圆与内心(共1小题)
13.(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为 289 .
【解答】解:如图,设内切圆的圆心为O,连接OE、OD,
则四边形EODC为正方形,
∴OE=OD=3=,
∴AC+BC﹣AB=6,
∴AC+BC=AB+6,
∴(AC+BC)2=(AB+6)2,
∴BC2+AC2+2BC×AC=AB2+12AB+36,
而BC2+AC2=AB2,
∴2BC×AC=12AB+36①,
∵小正方形的面积为49,
∴(BC﹣AC)2=49,
∴BC2+AC2﹣2BC×AC=49②,
把①代入②中得
AB2﹣12AB﹣85=0,
∴(AB﹣17)(AB+5)=0,
∴AB=17(负值舍去),
∴大正方形的面积为 289.
故答案为:289.
一十二.轨迹(共1小题)
14.(2021•宜宾)如图,⊙O的直径AB=4,P为⊙O上的动点,连结AP,Q为AP的中点,若点P在圆上运动一周,则点Q经过的路径长是 2π .
【解答】解:如图,连接OQ,
∵AB=4,
∴AO=2,
∵Q为AP的中点,
∴OQ⊥AP,
∴∠AQO=90°,
∴点Q在以AO为直径的圆上运动,
∴点Q经过的路径长为2π,
故答案为:2π.
一十三.轴对称-最短路线问题(共1小题)
15.(2020•宜宾)如图,四边形ABCD中,DA⊥AB,CB⊥AB,AD=3,AB=5,BC=2,P是边AB上的动点,则PC+PD的最小值是 5 .
【解答】解:延长CB到C′,使C′B=CB=2,连接DC′交AB于P.则DC′就是PC+PD的和的最小值.
∵DA⊥AB,CB⊥AB,
∴AD∥BC,
∴∠A=∠PBC′,∠ADP=∠C′,
∴△ADP∽△BC′P,
∴AP:BP=AD:BC′=3:2,
∴PB=AP,
∵AP+BP=AB=5,
∴AP=3,BP=2,
∴PD===3,PC′===2,
∴DC′=PD+PC′=3+2=5,
∴PC+PD的最小值是5,
故答案为5.
一十四.平行线分线段成比例(共1小题)
16.(2020•宜宾)在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分∠ABC交AC于点E,连接CD交BE于点O.若AC=8,BC=6,则OE的长是 .
【解答】解:在Rt△ACB中,∠ACB=90°,AC=8,BC=6,由勾股定理得:AB=10,
过A作AF∥BC,交BE延长线于F,
∵AF∥BC,
∴∠F=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠F=∠ABE,
∴AB=AF=10,
∵AF∥BC,
∴△AEF∽△CEB,
∴=,
∴=,
解得:AE=5,CE=8﹣5=3,
在Rt△ECB中,由勾股定理得:BE==3,
过D作DM∥AC,交BC于M,交BE于N,
∵D为AB的中点,DM∥AC,
∴M为BC的中点,N为BE的中点,
∴DN=AE==2.5,BN=NE=BE=,
∵DM∥AC,
∴△DNO∽△CEO,
∴=,
∴=,
解得:OE=,
故答案为:.
一十五.相似三角形的判定与性质(共1小题)
17.(2022•宜宾)如图,△ABC中,点E、F分别在边AB、AC上,∠1=∠2.若BC=4,AF=2,CF=3,则EF= .
【解答】解:∵∠1=∠2,∠A=∠A,
∴△AEF∽△ABC,
∴,
∵BC=4,AF=2,CF=3,
∴,
∴EF=,
故答案为:.
一十六.方差(共1小题)
18.(2021•宜宾)从甲、乙、丙三人中选一人参加环保知识决赛,经过两轮测试,他们的平均成绩都是88.9,方差分别是s甲2=2.25,s乙2=1.81,s丙2=3.42,你认为最适合参加决赛的选手是 乙 (填“甲”或“乙”或“丙”).
【解答】解:∵s甲2=2.25,s乙2=1.81,s丙2=3.42,
∴s丙2>s甲2>s乙2,
∴最适合参加决赛的选手是乙.
故答案为:乙.
四川省宜宾市三年(2020-2022)中考数学真题分类汇编-01选择题知识点分类: 这是一份四川省宜宾市三年(2020-2022)中考数学真题分类汇编-01选择题知识点分类,共27页。
四川省广元市三年(2020-2022)中考数学真题分类汇编-02+填空题知识点分类: 这是一份四川省广元市三年(2020-2022)中考数学真题分类汇编-02+填空题知识点分类,共18页。试卷主要包含了实数的算术平方根是 ,分解因式等内容,欢迎下载使用。
四川省宜宾市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类: 这是一份四川省宜宾市三年(2020-2022)中考数学真题分类汇编-03解答题知识点分类,共34页。试卷主要包含了﹣1;,2020;,的图象交于点C、D,两点,过点A作AC⊥OP于点C,,其顶点为点D,连结AC,,连结BC、BE、CE,已知等内容,欢迎下载使用。