终身会员
搜索
    上传资料 赚现金

    2022年江苏省常州市七校联考中考二模数学试题含解析

    立即下载
    加入资料篮
    2022年江苏省常州市七校联考中考二模数学试题含解析第1页
    2022年江苏省常州市七校联考中考二模数学试题含解析第2页
    2022年江苏省常州市七校联考中考二模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省常州市七校联考中考二模数学试题含解析

    展开

    这是一份2022年江苏省常州市七校联考中考二模数学试题含解析,共21页。试卷主要包含了答题时请按要求用笔,已知,下列各式等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.对于不等式组,下列说法正确的是(  )
    A.此不等式组的正整数解为1,2,3
    B.此不等式组的解集为
    C.此不等式组有5个整数解
    D.此不等式组无解
    2.下列二次根式中,为最简二次根式的是(  )
    A. B. C. D.
    3.如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别是
    BC、CD,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰 角为 30°,则电线杆 AB 的高度为( )

    A. B. C. D.
    4.下列各式计算正确的是( )
    A.(b+2a)(2a﹣b)=b2﹣4a2 B.2a3+a3=3a6
    C.a3•a=a4 D.(﹣a2b)3=a6b3
    5.的整数部分是(  )
    A.3 B.5 C.9 D.6
    6.已知a+b=4,c﹣d=﹣3,则(b+c)﹣(d﹣a)的值为( )
    A.7 B.﹣7 C.1 D.﹣1
    7.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    8.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( )
    A.①②③ B.①③⑤ C.②③④ D.②④⑤
    9.若一个凸多边形的内角和为720°,则这个多边形的边数为  
    A.4 B.5 C.6 D.7
    10.下列等式从左到右的变形,属于因式分解的是
    A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)
    C.4x2+8x-4=4x D.4my-2=2(2my-1)
    11.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是(  )

    A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH
    12.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( )
    A.1000(1+x)2=1000+500
    B.1000(1+x)2=500
    C.500(1+x)2=1000
    D.1000(1+2x)=1000+500
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.分解因式___________
    14.计算a10÷a5=_______.
    15.化简;÷(﹣1)=______.
    16.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n个图案是由 个组成的.

    17.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为 (用n表示)

    18.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知关于 的方程mx2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.
    20.(6分)如图,已知点C是∠AOB的边OB上的一点,
    求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.

    21.(6分)如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.
    (1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);
    (2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;
    (3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)

    22.(8分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.
    23.(8分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.

    24.(10分)计算:|﹣1|+﹣(1﹣)0﹣()﹣1.
    25.(10分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B,AB=.求反比例函数的解析式;若P(,)、Q(,)是该反比例函数图象上的两点,且时,,指出点P、Q各位于哪个象限?并简要说明理由.

    26.(12分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:
    2017年“五•一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
    27.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
    (1)求抛物线解析式并求出点D的坐标;
    (2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
    (3)当△CPE是等腰三角形时,请直接写出m的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,1.故选A.
    点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
    2、B
    【解析】
    最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
    【详解】
    A. =3, 不是最简二次根式;
    B. ,最简二次根式;
    C. =,不是最简二次根式;
    D. =,不是最简二次根式.
    故选:B
    【点睛】
    本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
    3、B
    【解析】
    延长AD交BC的延长线于E,作DF⊥BE于F,

    ∵∠BCD=150°,
    ∴∠DCF=30°,又CD=4,
    ∴DF=2,CF= =2,
    由题意得∠E=30°,
    ∴EF= ,
    ∴BE=BC+CF+EF=6+4,
    ∴AB=BE×tanE=(6+4)×=(2+4)米,
    即电线杆的高度为(2+4)米.
    点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
    4、C
    【解析】
    各项计算得到结果,即可作出判断.
    解:A、原式=4a2﹣b2,不符合题意;
    B、原式=3a3,不符合题意;
    C、原式=a4,符合题意;
    D、原式=﹣a6b3,不符合题意,
    故选C.
    5、C
    【解析】
    解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.
    6、C
    【解析】
    试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.
    故选A.
    考点:代数式的求值;整体思想.
    7、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.
    8、D
    【解析】
    根据实数的运算法则即可一一判断求解.
    【详解】
    ①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.
    故选D.
    9、C
    【解析】
    设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.
    【详解】
    设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.
    【点睛】
    本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.
    10、D
    【解析】
    根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
    【详解】
    解:A、是整式的乘法,故A不符合题意;
    B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
    C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
    D、把一个多项式转化成几个整式积的形式,故D符合题意;
    故选D.
    【点睛】
    本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
    11、D
    【解析】
    根据平行线的性质以及角平分线的定义,即可得到正确的结论.
    【详解】
    解:

    ,故A选项正确;





    故B选项正确;
    平分


    ,故C选项正确;

    ,故选项错误;
    故选.
    【点睛】
    本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.
    12、A
    【解析】
    设该公司第5、6个月投放科研经费的月平均增长率为x,5月份投放科研经费为1000(1+x),6月份投放科研经费为1000(1+x)(1+x),即可得答案.
    【详解】
    设该公司第5、6个月投放科研经费的月平均增长率为x,
    则6月份投放科研经费1000(1+x)2=1000+500,
    故选A.
    【点睛】
    考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    原式提取公因式,再利用完全平方公式分解即可.
    【详解】
    原式=2x(y2+2y+1)=2x(y+1)2,
    故答案为2x(y+1)2
    【点睛】
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    14、a1.
    【解析】
    试题分析:根据同底数幂的除法底数不变指数相减,可得答案.
    原式=a10-1=a1,
    故答案为a1.
    考点:同底数幂的除法.
    15、-
    【解析】
    直接利用分式的混合运算法则即可得出.
    【详解】
    原式,


    .
    故答案为.
    【点睛】
    此题主要考查了分式的化简,正确掌握运算法则是解题关键.
    16、16,3n+1.
    【解析】
    观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n个图案的基础图形的个数即可.
    【详解】
    由图可得,第1个图案基础图形的个数为4,
    第2个图案基础图形的个数为7,7=4+3,
    第3个图案基础图形的个数为10,10=4+3×2,
    …,
    第5个图案基础图形的个数为4+3(5−1)=16,
    第n个图案基础图形的个数为4+3(n−1)=3n+1.
    故答案为16,3n+1.
    【点睛】
    本题考查了规律型:图形的变化类,根据图像发现规律是解题的关键.
    17、(2n,1)
    【解析】
    试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:
    由图可知,n=1时,4×1+1=5,点A5(2,1),
    n=2时,4×2+1=9,点A9(4,1),
    n=3时,4×3+1=13,点A13(6,1),
    ∴点A4n+1(2n,1).
    18、
    【解析】
    由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.
    【详解】
    详解:∵正方形ABCD,
    ∴∠B=90°.
    ∵AB=12,BM=5,
    ∴AM=1.
    ∵ME⊥AM,
    ∴∠AME=90°=∠B.
    ∵∠BAE=90°,
    ∴∠BAM+∠MAE=∠MAE+∠E,
    ∴∠BAM=∠E,
    ∴△ABM∽△EMA,
    ∴=,即=,
    ∴AE=,
    ∴DE=AE﹣AD=﹣12=.
    故答案为.
    【点睛】
    本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析(2)m=1或m=-1
    【解析】
    试题分析:(1)由于m≠0,则计算判别式的值得到,从而可判断方程总有两个不相等的实数根;
    (2)先利用求根公式得到然后利用有理数的整除性确定整数的值.
    试题解析:(1)证明:∵m≠0,
    ∴方程为一元二次方程,

    ∴此方程总有两个不相等的实数根;
    (2)∵

    ∵方程的两个实数根都是整数,且m是整数,
    ∴m=1或m=−1.
    20、答案见解析
    【解析】
    首先作出∠AOB的角平分线,再作出OC的垂直平分线,两线的交点就是圆心P,再以P为圆心,PC长为半径画圆即可.
    【详解】
    解:如图所示:

    【点睛】
    本题考查基本作图,掌握垂直平分线及角平分线的做法是本题的解题关键..
    21、(1)作图见解析;(2)EB是平分∠AEC,理由见解析; (3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
    【解析】
    【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;
    (2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;
    (3)先判断出△AEP≌△FBP,即可得出结论.
    【详解】(1)依题意作出图形如图①所示;

    (2)EB是平分∠AEC,理由:
    ∵四边形ABCD是矩形,
    ∴∠C=∠D=90°,CD=AB=2,BC=AD=,
    ∵点E是CD的中点,
    ∴DE=CE=CD=1,
    在△ADE和△BCE中,,
    ∴△ADE≌△BCE,
    ∴∠AED=∠BEC,
    在Rt△ADE中,AD=,DE=1,
    ∴tan∠AED==,
    ∴∠AED=60°,
    ∴∠BCE=∠AED=60°,
    ∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
    ∴BE平分∠AEC;
    (3)∵BP=2CP,BC==,
    ∴CP=,BP=,
    在Rt△CEP中,tan∠CEP==,
    ∴∠CEP=30°,
    ∴∠BEP=30°,
    ∴∠AEP=90°,
    ∵CD∥AB,
    ∴∠F=∠CEP=30°,
    在Rt△ABP中,tan∠BAP==,
    ∴∠PAB=30°,
    ∴∠EAP=30°=∠F=∠PAB,
    ∵CB⊥AF,
    ∴AP=FP,
    ∴△AEP≌△FBP,
    ∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,
    变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
    【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.
    22、(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).
    【解析】
    试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.
    试题解析:(1)树状图如下图:

    则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),
    ∴点M(x,y)在函数y=﹣的图象上的概率为:.
    考点:列表法或树状图法求概率.
    23、见解析
    【解析】
    根据条件可以得出AD=AB,∠ABF=∠ADE=90°,从而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出结论.
    【详解】
    证明:∵四边形ABCD是正方形,
    ∴AB=AD,∠ABC=∠D=∠BAD=90°,
    ∴∠ABF=90°.
    ∵在△BAF和△DAE中,

    ∴△BAF≌△DAE(SAS),
    ∴∠FAB=∠EAD,
    ∵∠EAD+∠BAE=90°,
    ∴∠FAB+∠BAE=90°,
    ∴∠FAE=90°,
    ∴EA⊥AF.
    24、1
    【解析】
    试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.
    试题解析:
    解:|﹣1|+﹣(1﹣)0﹣()﹣1
    =1+3﹣1﹣2
    =1.
    点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.
    25、(1);(2)P在第二象限,Q在第三象限.
    【解析】
    试题分析:(1)求出点B坐标即可解决问题;
    (2)结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;
    试题解析:解:(1)由题意B(﹣2,),把B(﹣2,)代入中,得到k=﹣3,∴反比例函数的解析式为.
    (2)结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.
    点睛:此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    26、(1)50,108°,补图见解析;(2)9.6;(3).
    【解析】
    (1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;
    (2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;
    (3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.
    【详解】
    解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),
    A景点所对应的圆心角的度数是:30%×360°=108°,
    B景点接待游客数为:50×24%=12(万人),
    补全条形统计图如下:

    (2)∵E景点接待游客数所占的百分比为:×100%=12%,
    ∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);
    (3)画树状图可得:

    ∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,
    ∴同时选择去同一个景点的概率=.
    【点睛】
    本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.
    27、(1)y=﹣x2+2x+3,D点坐标为();(2)当m=时,△CDP的面积存在最大值,最大值为;(3)m的值为 或 或.
    【解析】
    (1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;
    (2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;
    (3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值.
    【详解】
    (1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,
    ∴抛物线的解析式为y=﹣x2+2x+3;
    把C(0,3)代入y=﹣x+n,解得n=3,
    ∴直线CD的解析式为y=﹣x+3,
    解方程组,解得
    或,
    ∴D点坐标为(,);
    (2)存在.
    设P(m,﹣m2+2m+3),则E(m,﹣m+3),
    ∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,
    ∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,
    当m=时,△CDP的面积存在最大值,最大值为;
    (3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;
    当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;
    当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,
    综上所述,m的值为或或.

    【点睛】
    本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.

    相关试卷

    数学:江苏省常州市多校联考2024年中考二模考试试题(解析版):

    这是一份数学:江苏省常州市多校联考2024年中考二模考试试题(解析版),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省常州市多校联考中考二模考试数学试题:

    这是一份2024年江苏省常州市多校联考中考二模考试数学试题,共9页。

    2024年江苏省常州市多校联考中考二模考试数学试题:

    这是一份2024年江苏省常州市多校联考中考二模考试数学试题,共9页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map