年终活动
搜索
    上传资料 赚现金

    2022年吉林省(省命题)重点达标名校中考数学仿真试卷含解析

    2022年吉林省(省命题)重点达标名校中考数学仿真试卷含解析第1页
    2022年吉林省(省命题)重点达标名校中考数学仿真试卷含解析第2页
    2022年吉林省(省命题)重点达标名校中考数学仿真试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年吉林省(省命题)重点达标名校中考数学仿真试卷含解析

    展开

    这是一份2022年吉林省(省命题)重点达标名校中考数学仿真试卷含解析,共21页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为( )

    A.8 B. C. D.
    2.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为(  )

    A.30° B.35° C.40° D.50°
    3.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于(  )

    A.132° B.134° C.136° D.138°
    4.已知地球上海洋面积约为361 000 000km2,361 000 000这个数用科学记数法可表示为( )
    A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109
    5.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )

    A.经过集中喷洒药物,室内空气中的含药量最高达到
    B.室内空气中的含药量不低于的持续时间达到了
    C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效
    D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内
    6.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于(  )
    A.3.5 B.4 C.7 D.14
    7.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )

    A.90° B.60° C.45° D.30°
    8.下列运算正确的是(  )
    A.a3•a2=a6 B.a﹣2=﹣ C.3﹣2= D.(a+2)(a﹣2)=a2+4
    9.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有(   )和黑子.

    A.37 B.42 C.73 D.121
    10.如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B在以O点为圆心,OA为半径的上,则k的值为  

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.同一个圆的内接正方形和正三角形的边心距的比为_____.
    12.让我们轻松一下,做一个数字游戏:
    第一步:取一个自然数,计算得;
    第二步:算出的各位数字之和得,计算得;
    第三步:算出的各位数字之和得,再计算得;
    依此类推,则____________
    13.如图所示,四边形ABCD中,,对角线AC、BD交于点E,且,,若,,则CE的长为_____.

    14.瑞士的一位中学教师巴尔末从光谱数据,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数_____.
    15.函数y=+的自变量x的取值范围是_____.
    16.如图,在菱形ABCD中,于E,,,则菱形ABCD的面积是______.

    17.如果a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则 ___________ .
    三、解答题(共7小题,满分69分)
    18.(10分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.
    (1)求w与x之间的函数关系式;
    (2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
    (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?
    19.(5分)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(图11-1)和扇形统计图(图11-2),根据图表中的信息解答下列问题:
    分组

    分数段(分)

    频数

    A
    36≤x<41
    22
    B
    41≤x<46
    5
    C
    46≤x<51
    15
    D
    51≤x<56
    m
    E
    56≤x<61
    10

    (1)求全班学生人数和m的值;
    (2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段;
    (3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.
    20.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.
    (1)求证:;
    (2)若△OCP与△PDA的面积比为1:4,求边AB的长.

    21.(10分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.

    22.(10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
    求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
    23.(12分)作图题:在∠ABC内找一点P,使它到∠ABC的两边的距离相等,并且到点A、C的距离也相等.(写出作法,保留作图痕迹)

    24.(14分)解方程:1+



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.
    【详解】
    ∵正方形ABCD的面积为16,正方形BPQR面积为25,
    ∴正方形ABCD的边长为4,正方形BPQR的边长为5,
    在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,
    ∵四边形ABCD是正方形,
    ∴∠A=∠D=∠BRQ=90°,
    ∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,
    ∴∠ABR=∠DRS,
    ∵∠A=∠D,
    ∴△ABR∽△DRS,
    ∴,
    ∴,
    ∴DS=,
    ∴∴阴影部分的面积S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,
    故选:D.
    【点睛】
    本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS的面积是解此题的关键.
    2、A
    【解析】
    根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解
    【详解】
    ∵CC′∥AB,∠CAB=75°,
    ∴∠C′CA=∠CAB=75°,
    又∵C、C′为对应点,点A为旋转中心,
    ∴AC=AC′,即△ACC′为等腰三角形,
    ∴∠CAC′=180°﹣2∠C′CA=30°.
    故选A.
    【点睛】
    此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键
    3、B
    【解析】
    过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.
    解:

    过E作EF∥AB,
    ∵AB∥CD,
    ∴AB∥CD∥EF,
    ∴∠C=∠FEC,∠BAE=∠FEA,
    ∵∠C=44°,∠AEC为直角,
    ∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
    ∴∠1=180°﹣∠BAE=180°﹣46°=134°,
    故选B.
    “点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
    4、C
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
    解答:解:将361 000 000用科学记数法表示为3.61×1.
    故选C.
    5、C
    【解析】
    利用图中信息一一判断即可.
    【详解】
    解: A、正确.不符合题意.
    B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;
    C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;
    D、正确.不符合题意,
    故选C.
    【点睛】
    本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.
    6、A
    【解析】
    根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OHAB.
    【详解】
    ∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.
    ∵H为AD边中点,∴OH是△ABD的中位线,∴OHAB7=3.1.

    故选A.
    【点睛】
    本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.
    7、C
    【解析】
    试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.
    试题解析:连接AC,如图:

    根据勾股定理可以得到:AC=BC=,AB=.
    ∵()1+()1=()1.
    ∴AC1+BC1=AB1.
    ∴△ABC是等腰直角三角形.
    ∴∠ABC=45°.
    故选C.
    考点:勾股定理.
    8、C
    【解析】
    直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.
    【详解】
    A、a3•a2=a5,故A选项错误;
    B、a﹣2=,故B选项错误;
    C、3﹣2=,故C选项正确;
    D、(a+2)(a﹣2)=a2﹣4,故D选项错误,
    故选C.
    【点睛】
    本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.
    9、C
    【解析】
    解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个.故选C.
    点睛:本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.
    10、A
    【解析】
    由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;
    【详解】
    函数与的图象在第二象限交于点,

    与反比例函数都是关于直线对称,
    与B关于直线对称,





    故选:A.
    【点睛】
    本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.
    【详解】
    设⊙O的半径为r,⊙O的内接正方形ABCD,如图,

    过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,
    ∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,
    ∴O为正方形ABCD的中心,
    ∴∠BOC=90°,
    ∵OQ⊥BC,OB=CO,
    ∴QC=BQ,∠COQ=∠BOQ=45°,
    ∴OQ=OC×cos45°=R;
    设⊙O的内接正△EFG,如图,

    过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,
    ∵正△EFG是⊙O的外接圆,
    ∴∠OGF=∠EGF=30°,
    ∴OH=OG×sin30°=R,
    ∴OQ:OH=(R):(R)=:1,
    故答案为:1.
    【点睛】
    本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.
    12、1
    【解析】
    根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.
    【详解】
    解:由题意可得,
    a1=52+1=26,
    a2=(2+6)2+1=65,
    a3=(6+5)2+1=1,
    a4=(1+2+2)2+1=26,

    ∴2019÷3=673,
    ∴a2019= a3=1,
    故答案为:1.
    【点睛】
    本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.
    13、
    【解析】
    此题有等腰三角形,所以可作BH⊥CD,交EC于点G,利用三线合一性质及邻补角互补可得∠BGD=120°,根据四边形内角和360°,得到∠ABG+∠ADG=180°.此时再延长GB至K,使AK=AG,构造出等边△AGK.易证△ABK≌△ADG,从而说明△ABD是等边三角形,BD=AB=,根据DG、CG、GH线段之间的关系求出CG长度,在Rt△DBH中利用勾股定理及三角函数知识得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG长度,最后CE=CG+GE求解.
    【详解】
    如图,作于H,交AC于点G,连接DG.

    ∵,
    ∴BH垂直平分CD,
    ∴,
    ∴,
    ∴,
    ∴,
    延长GB至K,连接AK使,则是等边三角形,
    ∴,
    又,
    ∴≌(),
    ∴,
    ∴是等边三角形,
    ∴,
    设,则,,
    ∴,
    ∴,
    在中,,解得,,
    当时,,所以,
    ∴,,,
    作,设,,,,,
    ∴,,
    ∴,则,
    故答案为
    【点睛】
    本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键.
    14、.
    【解析】
    分子的规律依次是:32,42,52,62,72,82,92…,分母的规律是:规律是:5+7=12 12+9=21 21+11=32 32+13=45…,即分子为(n+2)2,分母为n(n+4).
    【详解】
    解:由题可知规律,第9个数的分子是(9+2)2=121;
    第五个的分母是:32+13=45;第六个的分母是:45+15=60;第七个的分母是:60+17=77;
    第八个的分母是:77+19=96;则第九个的分母是:96+21=1.
    因而第九个数是:.
    故答案为:.
    【点睛】
    主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
    15、x≥1且x≠3
    【解析】
    根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.
    【详解】
    根据二次根式和分式有意义的条件可得:

    解得:且
    故答案为:且
    【点睛】
    考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.
    16、
    【解析】
    根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CD×AE,可求菱形ABCD的面积.
    【详解】
    ∵sinD=

    ∴AD=11
    ∵四边形ABCD是菱形
    ∴AD=CD=11
    ∴菱形ABCD的面积=11×8=96cm1.
    故答案为:96cm1.
    【点睛】
    本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决问题是本题的关键.
    17、.
    【解析】
    利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决问题.
    【详解】
    ∵a1=4
    a2=,
    a3=,
    a4=,

    数列以4,−三个数依次不断循环,
    ∵2019÷3=673,
    ∴a2019=a3=,
    故答案为:.
    【点睛】
    此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.

    三、解答题(共7小题,满分69分)
    18、(1)w=﹣2x2+480x﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)销售单价应定为100元
    【解析】
    (1)用每件的利润乘以销售量即可得到每天的销售利润,即 然后化为一般式即可;
    (2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;
    (3)求所对应的自变量的值,即解方程然后检验即可.
    【详解】
    (1)

    w与x的函数关系式为:
    (2)

    ∴当时,w有最大值.w最大值为1.
    答:销售单价定为120元时,每天销售利润最大,最大销售利润1元.
    (3)当时,
    解得:
    ∵想卖得快,
    不符合题意,应舍去.
    答:销售单价应定为100元.
    19、(1)50,18;(2)中位数落在51﹣56分数段;(3).
    【解析】
    (1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;
    (2)利用中位数的定义得出中位数的位置;
    (3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.
    【详解】
    解:(1)由题意可得:全班学生人数:15÷30%=50(人);
    m=50﹣2﹣5﹣15﹣10=18(人);
    (2)∵全班学生人数:50人,
    ∴第25和第26个数据的平均数是中位数,
    ∴中位数落在51﹣56分数段;
    (3)如图所示:
    将男生分别标记为A1,A2,女生标记为B1


    A1

    A2

    B1

    A1



    (A1,A2)

    (A1,B1)

    A2

    (A2,A1)



    (A2,B1)

    B1

    (B1,A1)

    (B1,A2)



    P(一男一女).
    【点睛】
    本题考查列表法与树状图法,频数(率)分布表,扇形统计图,中位数.
    20、 (1)详见解析;(2)10.
    【解析】
    ①只需证明两对对应角分别相等可得两个三角形相似;故.
    ②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.
    【详解】
    ①∵四边形ABCD是矩形,
    ∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.
    由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.
    ∴∠APO=90°.
    ∴∠APD=90°−∠CPO=∠POC.
    ∵∠D=∠C,∠APD=∠POC.
    ∴△OCP∽△PDA.
    ∴.
    ②∵△OCP与△PDA的面积比为1:4,
    ∴OCPD=OPPA=CPDA=14−−√=12.
    ∴PD=2OC,PA=2OP,DA=2CP.
    ∵AD=8,
    ∴CP=4,BC=8.
    设OP=x,则OB=x,CO=8−x.
    在△PCO中,
    ∵∠C=90∘,CP=4,OP=x,CO=8−x,
    ∴x2=(8−x)2+42.
    解得:x=5.
    ∴AB=AP=2OP=10.
    ∴边AB的长为10.
    【点睛】
    本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.
    21、(1)详见解析;(2).
    【解析】
    ∵四边形ABCD是矩形,
    ∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,
    ∴∠EAD=∠AFB,
    ∵DE⊥AF,
    ∴∠AED=90°,
    在△ADE和△FAB中,
    ∴△ADE≌△FAB(AAS),
    ∴AE=BF=1
    ∵BF=FC=1
    ∴BC=AD=2
    故在Rt△ADE中,∠ADE=30°,DE=,
    ∴的长==.
    22、(1),;(2)P,.
    【解析】
    试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
    试题解析:(1)把点A(1,a)代入一次函数y=-x+4,
    得:a=-1+4,解得:a=3,
    ∴点A的坐标为(1,3).
    把点A(1,3)代入反比例函数y=,
    得:3=k,
    ∴反比例函数的表达式y=,
    联立两个函数关系式成方程组得:,
    解得:,或,
    ∴点B的坐标为(3,1).
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.

    ∵点B、D关于x轴对称,点B的坐标为(3,1),
    ∴点D的坐标为(3,- 1).
    设直线AD的解析式为y=mx+n,
    把A,D两点代入得:,
    解得:,
    ∴直线AD的解析式为y=-2x+1.
    令y=-2x+1中y=0,则-2x+1=0,
    解得:x=,
    ∴点P的坐标为(,0).
    S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)
    =×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
    =.
    考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.
    23、见解析
    【解析】
    先作出∠ABC的角平分线,再连接AC,作出AC的垂直平分线,两条平分线的交点即为所求点.
    【详解】
    ①以B为圆心,以任意长为半径画弧,分别交BC、AB于D、E两点;
    ②分别以D、E为圆心,以大于DE为半径画圆,两圆相交于F点;
    ③连接AF,则直线AF即为∠ABC的角平分线;
    ⑤连接AC,分别以A、C为圆心,以大于AC为半径画圆,两圆相交于F、H两点;
    ⑥连接FH交BF于点M,则M点即为所求.

    【点睛】
    本题考查的是角平分线及线段垂直平分线的作法,熟练掌握是解题的关键.
    24、无解.
    【解析】
    两边都乘以x(x-3),去分母,化为整式方程求解即可.
    【详解】
    解:去分母得:x2﹣3x﹣x2=3x﹣18,
    解得:x=3,
    经检验x=3是增根,分式方程无解.
    【点睛】
    题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.

    相关试卷

    河南省临颍县重点达标名校2021-2022学年中考数学仿真试卷含解析:

    这是一份河南省临颍县重点达标名校2021-2022学年中考数学仿真试卷含解析,共17页。试卷主要包含了下列运算中正确的是等内容,欢迎下载使用。

    2022年浙江省杭州下城区重点达标名校中考数学仿真试卷含解析:

    这是一份2022年浙江省杭州下城区重点达标名校中考数学仿真试卷含解析,共23页。试卷主要包含了在数轴上表示不等式2,下列计算正确的是,规定,已知等内容,欢迎下载使用。

    2022年江北新区联盟重点达标名校中考数学仿真试卷含解析:

    这是一份2022年江北新区联盟重点达标名校中考数学仿真试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map