2022年湖南长沙市湘一芙蓉二中学中考数学押题试卷含解析
展开
这是一份2022年湖南长沙市湘一芙蓉二中学中考数学押题试卷含解析,共24页。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
A.0.7米 B.1.5米 C.2.2米 D.2.4米
2.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有( )
A.2个 B.3个 C.4个 D.5个
3.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:
转盘总次数
10
20
30
50
100
150
180
240
330
450
“和为7”出现频数
2
7
10
16
30
46
59
81
110
150
“和为7”出现频率
0.20
0.35
0.33
0.32
0.30
0.30
0.33
0.34
0.33
0.33
如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )
A.0.33 B.0.34 C.0.20 D.0.35
4.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=( )
A. B.2 C. D.
5.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为( )
A.1 B.2 C.3 D.4
6.如图,已知,那么下列结论正确的是( )
A. B. C. D.
7.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是( )
A.(6,4) B.(4,6) C.(5,4) D.(4,5)
8.下列函数中,y随着x的增大而减小的是( )
A.y=3x B.y=﹣3x C. D.
9.某运动会颁奖台如图所示,它的主视图是( )
A. B. C. D.
10.点是一次函数图象上一点,若点在第一象限,则的取值范围是( ).
A. B. C. D.
11.如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k的取值范围是( )
A. B. C. D.
12.2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是( )
A.2.098 7×103 B.2.098 7×1010 C.2.098 7×1011 D.2.098 7×1012
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知是方程组的解,则3a﹣b的算术平方根是_____.
14.|-3|=_________;
15.如图,在正方形中,对角线与相交于点,为上一点,,为的中点.若的周长为18,则的长为________.
16.用一条长 60 cm 的绳子围成一个面积为 216的矩形.设矩形的一边长为 x cm,则可列方程为______.
17.若式子在实数范围内有意义,则x的取值范围是 .
18.计算(2a)3的结果等于__.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.
(1)第一次购书的进价是多少元?
(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?
20.(6分)如图①,一次函数y=x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=x2+bx+c的图象经过A、B两点,与x轴交于另一点C.
(1)求二次函数的关系式及点C的坐标;
(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;
(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.
21.(6分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.
22.(8分)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”.
(1)已知点A的坐标为,
①若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;
②点C在直线x=5上,且点C为点A,B的“和谐点”,求直线AC的表达式.
(2)⊙O的半径为r,点为点、的“和谐点”,且DE=2,若使得与⊙O有交点,画出示意图直接写出半径r的取值范围.
23.(8分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.
(1)当y1﹣y2=4时,求m的值;
(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).
24.(10分)分式化简:(a-)÷
25.(10分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。
(1)选中的男主持人为甲班的频率是
(2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)
26.(12分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:
A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.
以下是根据调查结果绘制的统计图表的一部分,
运动形式
A
B
C
D
E
人数
请你根据以上信息,回答下列问题:
接受问卷调查的共有 人,图表中的 , .
统计图中,类所对应的扇形的圆心角的度数是 度.
揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.
27.(12分)在△ABC中,,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图①,连接AD,若,求∠B的大小;如图②,若点F为的中点,的半径为2,求AB的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
【详解】
在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.
【点睛】
本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
2、C
【解析】
试题分析:∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,
∵AD=AB,
∴AE=AD,
又∠ABE=∠AHD=90°
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=(180°﹣45°)=67.5°,
∴∠CED=180°﹣45°﹣67.5°=67.5°,
∴∠AED=∠CED,故①正确;
∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),
∴∠OHE=∠AED,
∴OE=OH,
∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,
∴∠OHD=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正确;
∵∠EBH=90°﹣67.5°=22.5°,
∴∠EBH=∠OHD,
又BE=DH,∠AEB=∠HDF=45°
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正确;
由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,
∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;
∵AB=AH,∠BAE=45°,
∴△ABH不是等边三角形,
∴AB≠BH,
∴即AB≠HF,故⑤错误;
综上所述,结论正确的是①②③④共4个.
故选C.
【点睛】
考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质
3、A
【解析】
根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.
【详解】
由表中数据可知,出现“和为7”的概率为0.33.
故选A.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
4、C
【解析】
如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
【详解】
解:如图所示,
∵BD=2、CD=1,
∴BC===,
则sin∠BCA===,
故选C.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
5、C
【解析】
先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.
【详解】
去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①
方程①的根的情况有两种:
(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.
解得a=.
当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.
(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.
(i)当x=1时,代入①式得3﹣a=1,即a=3.
当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.
而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.
(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.
当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣ .
x1是增根,故x=﹣为方程的唯一实根;
因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.
故选C.
【点睛】
考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.
6、A
【解析】
已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.
【详解】
∵AB∥CD∥EF,
∴.
故选A.
【点睛】
本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.
7、D
【解析】
过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.
【详解】
如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,
∵O′为圆心,
∴AC=BC,
∵A(0,2),B(0,8),
∴AB=8−2=6,
∴AC=BC=3,
∴OC=8−3=5,
∵⊙O′与x轴相切,
∴O′D=O′B=OC=5,
在Rt△O′BC中,由勾股定理可得O′C===4,
∴P点坐标为(4,5),
故选:D.
【点睛】
本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.
8、B
【解析】
试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;
B、y=﹣3x,y随着x的增大而减小,正确;
C、,每个象限内,y随着x的增大而减小,故此选项错误;
D、,每个象限内,y随着x的增大而增大,故此选项错误;
故选B.
考点:反比例函数的性质;正比例函数的性质.
9、C
【解析】
从正面看到的图形如图所示:
,
故选C.
10、B
【解析】
试题解析:把点代入一次函数得,
.
∵点在第一象限上,
∴,可得,
因此,即,
故选B.
11、C
【解析】
解:把点(0,2)(a,0)代入,得b=2.则a=,
∵,
∴,
解得:k≥2.
故选C.
【点睛】
本题考查一次函数与一元一次不等式,属于综合题,难度不大.
12、C
【解析】
将2098.7亿元用科学记数法表示是2.0987×1011,
故选:C.
点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2.
【解析】
灵活运用方程的性质求解即可。
【详解】
解:由是方程组的解,可得满足方程组,
由①+②的,3x-y=8,即可3a-b=8,
故3a﹣b的算术平方根是,
故答案:
【点睛】
本题主要考查二元一次方程组的性质及其解法。
14、1
【解析】
分析:根据负数的绝对值等于这个数的相反数,即可得出答案.
解答:解:|-1|=1.
故答案为1.
15、
【解析】
先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.
【详解】
解:∵四边形是正方形,
∴,,.
在中,为的中点,
∴.
∵的周长为18,,
∴,
∴.
在中,根据勾股定理,得,
∴,
∴.
在中,∵,为的中点,
又∵为的中位线,
∴.
故答案为:.
【点睛】
本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中.
16、
【解析】
根据周长表达出矩形的另一边,再根据矩形的面积公式即可列出方程.
【详解】
解:由题意可知,矩形的周长为60cm,
∴矩形的另一边为:,
∵面积为 216,
∴
故答案为:.
【点睛】
本题考查了一元二次方程与实际问题,解题的关键是找出等量关系.
17、.
【解析】
根据二次根式被开方数必须是非负数的条件,
要使在实数范围内有意义,必须.
故答案为
18、8
【解析】
试题分析:根据幂的乘方与积的乘方运算法则进行计算即可
考点:(1)、幂的乘方;(2)、积的乘方
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、赚了520元
【解析】
(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;
(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.
【详解】
(1)设第一次购书的单价为x元,
根据题意得:+10=,
解得:x=5,
经检验,x=5是原方程的解,
答:第一次购书的进价是5元;
(2)第一次购书为1200÷5=240(本),
第二次购书为240+10=250(本),
第一次赚钱为240×(7﹣5)=480(元),
第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),
所以两次共赚钱480+40=520(元),
答:该老板两次售书总体上是赚钱了,共赚了520元.
【点睛】
此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
20、(1)二次函数的关系式为y=;C(1,0);(2)当m=2时,PD+PE有最大值3;(3)点M的坐标为(,)或(,).
【解析】
(1)先求出A、B的坐标,然后把A、B的坐标分别代入二次函数的解析式,解方程组即可得到结论;
(2)先证明△PDE∽△OAB,得到PD=2PE.设P(m,),则E(m,),PD+PE=3PE,然后配方即可得到结论.
(3)分两种情况讨论:①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.求出圆心O1的坐标和半径,利用MO1=半径即可得到结论.
②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.求出点O2的坐标,算出DM的长,即可得到结论.
【详解】
解:(1)令y==0,得:x=4,∴A(4,0).
令x=0,得:y=-2,∴B(0,-2).
∵二次函数y=的图像经过A、B两点,
∴,解得:,
∴二次函数的关系式为y=.
令y==0,解得:x=1或x=4,∴C(1,0).
(2)∵PD∥x轴,PE∥y轴,
∴∠PDE=∠OAB,∠PED=∠OBA,
∴△PDE∽△OAB.∴===2,
∴PD=2PE.设P(m,),
则E(m,).
∴PD+PE=3PE=3×[()-()]==.
∵0<m<4,∴当m=2时,PD+PE有最大值3.
(3)①当点M在在直线AB上方时,则点M在△ABC的外接圆上,如图1.
∵△ABC的外接圆O1的圆心在对称轴上,设圆心O1的坐标为(,-t).
∴=,解得:t=2,
∴圆心O1的坐标为(,-2),∴半径为.
设M(,y).∵MO1=,∴,
解得:y=,∴点M的坐标为().
②当点M在在直线AB下方时,作O1关于AB的对称点O2,如图2.
∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x轴,∴∠O1BA=∠OAB,
∴∠O1AB=∠OAB,O2在x轴上,∴点O2的坐标为 (,0),∴O2D=1,
∴DM==,∴点M的坐标为(,).
综上所述:点M的坐标为(,)或(,).
点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.
21、(1)答案见解析;(2)答案见解析.
【解析】
(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;
(2)根据相似三角形的性质得到 ,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到 ,等量代换得到,即可得到结论.
本题解析:
【详解】
证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,又∵∠E=∠E,∴△ACE∽△BDE;
(2)∵△ACE∽△BDE
∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴BE•DC=AB•DE.
【点睛】
本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.
22、(1)①点C坐标为或;②y=x+2或y=-x+3;(2)或
【解析】
(1)①根据“和谐点”的定义即可解决问题;
②首先求出点C坐标,再利用待定系数法即可解决问题;
(2)分两种情形画出图形即可解决问题.
【详解】
(1)①如图1.
观察图象可知满足条件的点C坐标为C(1,5)或C'(3,5);
②如图2.
由图可知,B(5,3).
∵A(1,3),∴AB=3.
∵△ABC为等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).
设直线AC的表达式为y=kx+b(k≠0),当C1(5,7)时,,∴,∴y=x+2,当C2(5,﹣1)时,,∴,∴y=﹣x+3.
综上所述:直线AC的表达式是y=x+2或y=﹣x+3.
(2)分两种情况讨论:
①当点F在点E左侧时:
连接OD.则OD=,∴.
②当点F在点E右侧时:
连接OE,OD.
∵E(1,2),D(1,3),∴OE=,OD=,∴.
综上所述:或.
【点睛】
本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.
23、(1)m=1;(2)点P坐标为(﹣2m,1)或(6m,1).
【解析】
(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解
析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m的值;
(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E(2m,1),点P在x轴上,即可求出点P的坐标.
【详解】
解:(1)设反比例函数的解析式为y=,
∵反比例函数的图象经过点A(﹣4,﹣3),
∴k=﹣4×(﹣3)=12,
∴反比例函数的解析式为y=,
∵反比例函数的图象经过点B(2m,y1),C(6m,y2),
∴y1==,y2==,
∵y1﹣y2=4,
∴﹣=4,
∴m=1,
经检验,m=1是原方程的解,
故m的值是1;
(2)设BD与x轴交于点E,
∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,
∴D(2m,),BD=﹣=,
∵三角形PBD的面积是8,
∴BD•PE=8,
∴••PE=8,
∴PE=4m,
∵E(2m,1),点P在x轴上,
∴点P坐标为(﹣2m,1)或(6m,1).
【点睛】
本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.
24、a-b
【解析】
利用分式的基本性质化简即可.
【详解】
===.
【点睛】
此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.
25、 (1) (2) ,图形见解析.
【解析】
(1)根据概率的定义即可求出;
(2)先根据题意列出树状图,再利用概率公式进行求解.
【详解】
(1)由题意P(选中的男主持人为甲班)=
(2)列出树状图如下
∴P(选中的男女主持人均为甲班的)=
【点睛】
此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.
26、(1)150、45、36;(2)28.8°;(3)450人
【解析】
(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;
(2)360°乘以A项目人数占总人数的比例可得;
(3)利用总人数乘以样本中C人数所占比例可得.
【详解】
解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,
∴n=36,
故答案为:150、45、36;
(2)A类所对应的扇形圆心角的度数为
故答案为:28.8°;
(3)(人)
答:估计该社区参加碧沙岗“暴走团”的大约有450人
【点睛】
本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
27、 (1)∠B=40°;(2)AB= 6.
【解析】
(1)连接OD,由在△ABC中, ∠C=90°,BC是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案;
(2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案.
【详解】
解:(1)如解图①,连接OD,
∵BC切⊙O于点D,
∴∠ODB=90°,
∵∠C=90°,
∴AC∥OD,
∴∠CAD=∠ADO,
∵OA=OD,
∴∠DAO=∠ADO=∠CAD=25°,
∴∠DOB=∠CAO=∠CAD+∠DAO=50°,
∵∠ODB=90°,
∴∠B=90°-∠DOB=90°-50°=40°;
(2)如解图②,连接OF,OD,
∵AC∥OD,
∴∠OFA=∠FOD,
∵点F为弧AD的中点,
∴∠AOF=∠FOD,
∴∠OFA=∠AOF,
∴AF=OA,
∵OA=OF,
∴△AOF为等边三角形,
∴∠FAO=60°,则∠DOB=60°,
∴∠B=30°,
∵在Rt△ODB中,OD=2,
∴OB=4,
∴AB=AO+OB=2+4=6.
【点睛】
本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.
相关试卷
这是一份2024年湖南省长沙市芙蓉区长郡芙蓉中学中考数学模拟试卷(1)(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖南省长沙市湘一芙蓉、一中学双语校2021-2022学年中考五模数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,化简•a5所得的结果是,下面调查方式中,合适的是等内容,欢迎下载使用。
这是一份2022年湖南长沙市湘一芙蓉二中学中考数学仿真试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。