搜索
    上传资料 赚现金
    英语朗读宝

    2022年江苏省常州市新北区实验校中考二模数学试题含解析

    2022年江苏省常州市新北区实验校中考二模数学试题含解析第1页
    2022年江苏省常州市新北区实验校中考二模数学试题含解析第2页
    2022年江苏省常州市新北区实验校中考二模数学试题含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省常州市新北区实验校中考二模数学试题含解析

    展开

    这是一份2022年江苏省常州市新北区实验校中考二模数学试题含解析,共27页。试卷主要包含了答题时请按要求用笔,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.点A、C为半径是4的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为(  )
    A.或2 B.或2 C.2或2 D.2或2
    2.2017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒.将17200用科学记数法表示应为(  )
    A.172×102 B.17.2×103 C.1.72×104 D.0.172×105
    3.下列说法正确的是( )
    A.对角线相等且互相垂直的四边形是菱形
    B.对角线互相平分的四边形是正方形
    C.对角线互相垂直的四边形是平行四边形
    D.对角线相等且互相平分的四边形是矩形
    4.比较4,,的大小,正确的是(  )
    A.4<< B.4<<
    C.<4< D.<<4
    5.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    6.当 a>0 时,下列关于幂的运算正确的是( )
    A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a5
    7.如图是正方体的表面展开图,则与“前”字相对的字是(  )

    A.认 B.真 C.复 D.习
    8.下列运算正确的是(  )
    A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x3
    9.下列运算正确的是(  )
    A.a12÷a4=a3 B.a4•a2=a8 C.(﹣a2)3=a6 D.a•(a3)2=a7
    10.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
    册数
    0
    1
    2
    3
    4
    人数
    4
    12
    16
    17
    1
    关于这组数据,下列说法正确的是(  )
    A.中位数是2 B.众数是17 C.平均数是2 D.方差是2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图放置的正方形,正方形,正方形,…都是边长为的正方形,点在轴上,点,…,都在直线上,则的坐标是__________,的坐标是______.

    12.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为_____.

    13.现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为_____.

    14.已知关于x的一元二次方程有两个相等的实数根,则a的值是______.
    15.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.
    16.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.
    三、解答题(共8题,共72分)
    17.(8分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.
    设,


    即:
    事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数: ,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:
    我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?
    计算:
    某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:
    已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正整数幂.请直接写出所有满足条件的软件激活码正整数的值.
    18.(8分)某景区内从甲地到乙地的路程是,小华步行从甲地到乙地游玩,速度为,走了后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为,第趟电瓶车距乙地的路程为,为正整数,行进时间为.如图画出了,与的函数图象.

    (1)观察图,其中 , ;
    (2)求第2趟电瓶车距乙地的路程与的函数关系式;
    (3)当时,在图中画出与的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有 趟电瓶车驶过.
    19.(8分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).
    (1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;
    (2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;
    (3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .
    20.(8分)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.

    21.(8分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.

    (1)求抛物线的解析式;
    (2)点P为直线AC上方抛物线上一动点;
    ①连接PO,交AC于点E,求的最大值;
    ②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.
    22.(10分)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“舞蹈”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如图统计图:

    根据统计图所提供的倍息,解答下列问题:
    (1)本次抽样调查中的学生人数是多少人;
    (2 )补全条形统计图;
    (3)若该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数;
    (4)现有爱好舞蹈的两名男生两名女生想参加舞蹈社,但只能选两名学生,请你用列表或画树状图的方法,求出正好选到一男一女的概率.
    23.(12分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为.

    (1)当时,求四边形的面积;
    (2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;
    (3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标.
    24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
    (1)求此抛物线的解析式.
    (2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.
    【详解】
    过B作直径,连接AC交AO于E,

    ∵点B为的中点,
    ∴BD⊥AC,
    如图①,
    ∵点D恰在该圆直径上,D为OB的中点,
    ∴BD=×4=2,
    ∴OD=OB-BD=2,
    ∵四边形ABCD是菱形,
    ∴DE=BD=1,
    ∴OE=1+2=3,
    连接OC,
    ∵CE=,
    在Rt△DEC中,由勾股定理得:DC=;
    如图②,

    OD=2,BD=4+2=6,DE=BD=3,OE=3-2=1,
    由勾股定理得:CE=,
    DC=.
    故选C.
    【点睛】
    本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.
    2、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将17200用科学记数法表示为1.72×1.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3、D
    【解析】
    分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.
    详解:A、对角线互相平分且垂直的四边形是菱形,故错误;
    B、四条边相等的四边形是菱形,故错误;
    C、对角线相互平分的四边形是平行四边形,故错误;
    D、对角线相等且相互平分的四边形是矩形,正确;
    故选D.
    点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.
    4、C
    【解析】
    根据4=<且4=>进行比较
    【详解】
    解:易得:4=<且4=>,
    所以<4<
    故选C.
    【点睛】
    本题主要考查开平方开立方运算。
    5、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A.不是轴对称图形,也不是中心对称图形.故错误;
    B.不是轴对称图形,也不是中心对称图形.故错误;
    C.是轴对称图形,也是中心对称图形.故正确;
    D.不是轴对称图形,是中心对称图形.故错误.
    故选C.
    【点睛】
    掌握好中心对称图形与轴对称图形的概念.
    轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;
    中心对称图形是要寻找对称中心,旋转180°后与原图重合.
    6、A
    【解析】
    直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.
    【详解】
    A选项:a0=1,正确;
    B选项:a﹣1= ,故此选项错误;
    C选项:(﹣a)2=a2,故此选项错误;
    D选项:(a2)3=a6,故此选项错误;
    故选A.
    【点睛】
    考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键.
    7、B
    【解析】
    分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.
    详解:由图形可知,与“前”字相对的字是“真”.
    故选B.
    点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.
    8、B
    【解析】
    分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.
    详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;
    B. ()﹣1=2,故该选项正确;
    C.x与y不是同类项,不能合并,故该选项错误;
    D. x6÷x2=x6-2=x4,故该选项错误.
    故选B.
    点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.
    9、D
    【解析】
    分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.
    【详解】
    解:A、a12÷a4=a8,此选项错误;
    B、a4•a2=a6,此选项错误;
    C、(-a2)3=-a6,此选项错误;
    D、a•(a3)2=a•a6=a7,此选项正确;
    故选D.
    【点睛】
    本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.
    10、A
    【解析】
    试题解析:察表格,可知这组样本数据的平均数为:
    (0×4+1×12+2×16+3×17+4×1)÷50=;
    ∵这组样本数据中,3出现了17次,出现的次数最多,
    ∴这组数据的众数是3;
    ∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,
    ∴这组数据的中位数为2,
    故选A.
    考点:1.方差;2.加权平均数;3.中位数;4.众数.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可.
    【详解】
    分别过点 作y轴的垂线交y轴于点,

    ∵点B在上









    同理, 都是含30°的直角三角形
    ∵,


    同理,点 的横坐标为
    纵坐标为
    故点的坐标为
    故答案为:;.
    【点睛】
    本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.
    12、2
    【解析】
    过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
    【详解】
    解:连接OB,OA′,AA′,
    ∵AA′关于直线MN对称,

    ∵∠AMN=40°,
    ∴∠A′ON=80°,∠BON=40°,
    ∴∠A′OB=120°,
    过O作OQ⊥A′B于Q,
    在Rt△A′OQ中,OA′=2,
    ∴A′B=2A′Q=
    即PA+PB的最小值.
    【点睛】
    本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键.
    13、18°
    【解析】
    试题分析:根据圆锥的展开图的圆心角计算法则可得:扇形的圆心角=×360°=90°,则θ=108°-90°=18°.
    考点:圆锥的展开图
    14、.
    【解析】
    试题分析:∵关于x的一元二次方程有两个相等的实数根,
    ∴.
    考点:一元二次方程根的判别式.
    15、4.02×1.
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:40.2万=4.02×1,
    故答案为:4.02×1.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    16、直角三角形.
    【解析】
    根据题意,画出图形,用垂直平分线的性质解答.
    【详解】
    点O落在AB边上,
    连接CO,
    ∵OD是AC的垂直平分线,
    ∴OC=OA,
    同理OC=OB,
    ∴OA=OB=OC,
    ∴A、B、C都落在以O为圆心,以AB为直径的圆周上,
    ∴∠C是直角.
    ∴这个三角形是直角三角形.

    【点睛】
    本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.

    三、解答题(共8题,共72分)
    17、(1)3;(2);(3)
    【解析】
    设塔的顶层共有盏灯,根据题意列出方程,进行解答即可.
    参照题目中的解题方法进行计算即可.
    由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别分别即可求得N的值
    【详解】
    设塔的顶层共有盏灯,由题意得
    .
    解得,
    顶层共有盏灯.
    设,

    ,
    即:
    .

    由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n项,
    根据等比数列前n项和公式,求得每项和分别为:
    每项含有的项数为:1,2,3,…,n,
    总共的项数为
    所有项数的和为



    由题意可知:为2的整数幂,只需将−2−n消去即可,
    则①1+2+(−2−n)=0,解得:n=1,总共有,不满足N>10,
    ②1+2+4+(−2−n)=0,解得:n=5,总共有 满足,
    ③1+2+4+8+(−2−n)=0,解得:n=13,总共有 满足,
    ④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有 不满足,

    【点睛】
    考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.
    18、(1)0.8;2.1;(2);(2)图像见解析,2
    【解析】
    (1)根据小华走了4千米后休息了一段时间和小华的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的时间,再加上1.5即为b的值;
    (2)先求出电瓶车的速度,再根据路程=两地间距-速度×时间即可得出答案;
    (2)结合的图象即可画出的图象,观察图象即可得出答案.
    【详解】
    解:(1),

    故答案为:0.8;2.1.
    (2)根据题意得:
    电瓶车的速度为
    ∴.
    (2)画出函数图象,如图所示.
    观察函数图象,可知:小华在休息后前往乙地的途中,共有2趟电瓶车驶过.
    故答案为:2.

    【点睛】
    本题主要考查一次函数的应用,能够从图象上获取有效信息是解题的关键.
    19、(1);(1) ;(3);
    【解析】
    (1)直接根据概率公式求解;
    (1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;
    (3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.
    【详解】
    解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;
    (1)画树状图为:

    共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,
    所以一个径赛项目和一个田赛项目的概率P1==;
    (3)两个项目都是径赛项目的结果数为6,
    所以两个项目都是径赛项目的概率P1==.
    故答案为.
    考点:列表法与树状图法.
    20、证明过程见解析
    【解析】
    由∠BAE=∠BCE=∠ACD=90°,可求得∠DCE=∠ACB,且∠B+∠CEA=∠CEA+∠DEC=180°,可求得∠DEC=∠ABC,再结合条件可证明△ABC≌△DEC.
    【详解】
    ∵∠BAE=∠BCE=∠ACD=90°,
    ∴∠5+∠4=∠4+∠3,
    ∴∠5=∠3,且∠B+∠CEA=180°,
    又∠7+∠CEA=180°,
    ∴∠B=∠7,
    在△ABC和△DEC中 ,
    ∴△ABC≌△DEC(ASA).
    21、(1);(2)①有最大值1;②(2,3)或(,)
    【解析】
    (1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;
    (2)①根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
    ②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点D,求得D(,0),得到DA=DC=DB=,过P作x轴的平行线交y轴于R,交AC于G,情况一:如图,∠PCF=2∠BAC=∠DGC+∠CDG,情况二,∠FPC=2∠BAC,解直角三角形即可得到结论.
    【详解】
    (1)当x=0时,y=2,即C(0,2),
    当y=0时,x=4,即A(4,0),
    将A,C点坐标代入函数解析式,得

    解得,
    抛物线的解析是为;
       (2)过点P向x轴做垂线,交直线AC于点M,交x轴于点N

    ∵直线PN∥y轴,
    ∴△PEM~△OEC,

    把x=0代入y=-x+2,得y=2,即OC=2,
    设点P(x,-x2+x+2),则点M(x,-x+2),
    ∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,
    ∴=,
    ∵0<x<4,∴当x=2时,=有最大值1.
    ②∵A(4,0),B(-1,0),C(0,2),
    ∴AC=2,BC=,AB=5,
    ∴AC2+BC2=AB2,
    ∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,
    ∴D(,0),
    ∴DA=DC=DB=,
    ∴∠CDO=2∠BAC,
    ∴tan∠CDO=tan(2∠BAC)=,
    过P作x轴的平行线交y轴于R,交AC的延长线于G,
    情况一:如图

    ∴∠PCF=2∠BAC=∠PGC+∠CPG,
    ∴∠CPG=∠BAC,
    ∴tan∠CPG=tan∠BAC=,
    即,
    令P(a,-a2+a+2),
    ∴PR=a,RC=-a2+a,
    ∴,
    ∴a1=0(舍去),a2=2,
    ∴xP=2,-a2+a+2=3,P(2,3)
    情况二,∴∠FPC=2∠BAC,
    ∴tan∠FPC=,
    设FC=4k,
    ∴PF=3k,PC=5k,
    ∵tan∠PGC=,
    ∴FG=6k,
    ∴CG=2k,PG=3k,
    ∴RC=k,RG=k,PR=3k-k=k,
    ∴,
    ∴a1=0(舍去),a2=,
    xP=,-a2+a+2=,即P(,),
    综上所述:P点坐标是(2,3)或(,).
    【点睛】
    本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出,又利用了二次函数的性质;解(3)的关键是利用解直角三角形,要分类讨论,以防遗漏.
    22、(1)本次抽样调查中的学生人数为100人;(2)补全条形统计图见解析;(3)估计该校课余兴趣爱好为“打球”的学生人数为800人;(4).
    【解析】
    (1)用选“阅读”的人数除以它所占的百分比即可得到调查的总人数;
    (2)先计算出选“舞蹈”的人数,再计算出选“打球”的人数,然后补全条形统计图;
    (3)用2000乘以样本中选“打球”的人数所占的百分比可估计该校课余兴趣爱好为“打球”的学生人数;
    (4)画树状图展示所有12种等可能的结果数,再找出选到一男一女的结果数,然后根据概率公式求解.
    【详解】
    (1)30÷30%=100,
    所以本次抽样调查中的学生人数为100人;
    (2)选”舞蹈”的人数为100×10%=10(人),
    选“打球”的人数为100﹣30﹣10﹣20=40(人),
    补全条形统计图为:

    (3)2000×=800,
    所以估计该校课余兴趣爱好为“打球”的学生人数为800人;
    (4)画树状图为:

    共有12种等可能的结果数,其中选到一男一女的结果数为8,
    所以选到一男一女的概率=.
    【点睛】
    本题考查了条形统计图与扇形统计图,列表法与树状图法求概率,读懂统计图,从中找到有用的信息是解题的关键.本题中还用到了知识点为:概率=所求情况数与总情况数之比.
    23、(1)4;(2),;(3).
    【解析】
    (1)过点D作DE⊥x轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;
    (2)设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;
    (3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论.
    【详解】
    解:(1)过点D作DE⊥x轴于点E

    当时,得到,
    顶点,
    ∴DE=1
    由,得,;
    令,得;
    ,,,
    ,OC=3

    (2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,

    由翻折得:,



    轴,,



    由勾股定理得:,





    ,,

    解得:(不符合题意,舍去),;
    ,.
    (3)原抛物线的顶点在直线上,
    直线交轴于点,
    如图2,过点作轴于,

    由题意,平移后的新抛物线顶点为,解析式为,
    设点,,则,,,
    过点作于,于,轴于,




    、分别平分,,

    点在抛物线上,

    根据题意得:
    解得:

    【点睛】
    此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.
    24、(1)y=﹣x2﹣2x+1;(2)(﹣ ,)
    【解析】
    (1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;
    (2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,△PDE的周长也最大.将x=-代入-x2-2x+1,进而得到P点的坐标.
    【详解】
    解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),
    ∴,
    解得,
    ∴抛物线的解析式为y=﹣x2﹣2x+1;
    (2)∵A(﹣1,0),B(0,1),
    ∴OA=OB=1,
    ∴△AOB是等腰直角三角形,
    ∴∠BAO=45°.
    ∵PF⊥x轴,
    ∴∠AEF=90°﹣45°=45°,
    又∵PD⊥AB,
    ∴△PDE是等腰直角三角形,
    ∴PE越大,△PDE的周长越大.
    设直线AB的解析式为y=kx+b,则
    ,解得,
    即直线AB的解析式为y=x+1.
    设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),
    则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,
    所以当x=﹣时,PE最大,△PDE的周长也最大.
    当x=﹣时,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,
    即点P坐标为(﹣,)时,△PDE的周长最大.

    【点睛】
    本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.

    相关试卷

    江苏省常州市星辰实验校2021-2022学年中考四模数学试题含解析:

    这是一份江苏省常州市星辰实验校2021-2022学年中考四模数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,,则的值是等内容,欢迎下载使用。

    江苏省常州市新北区2022年中考数学全真模拟试题含解析:

    这是一份江苏省常州市新北区2022年中考数学全真模拟试题含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2022年江苏省常州市七校联考中考二模数学试题含解析:

    这是一份2022年江苏省常州市七校联考中考二模数学试题含解析,共21页。试卷主要包含了答题时请按要求用笔,已知,下列各式等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map