所属成套资源:多地区中考数学真题按题型知识点分层分类汇编
湖北省恩施州三年(2020-2022)中考数学真题分类汇编-02填空题
展开
这是一份湖北省恩施州三年(2020-2022)中考数学真题分类汇编-02填空题,共10页。试卷主要包含了9的算术平方根是 ,观察下列一组数,因式分解,分解因式, 等内容,欢迎下载使用。
湖北省恩施州三年(2020-2022)中考数学真题分类汇编-02填空题一.算术平方根(共1小题)1.(2022•恩施州)9的算术平方根是 .二.规律型:数字的变化类(共2小题)2.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为an,且满足+=.则a4= ,a2022= .3.(2021•恩施州)古希腊数学家定义了五边形数,如下表所示,将点按照表中方式排列成五边形点阵,图形中的点的个数即五边形数; 图形…五边形数1512223551…将五边形数1,5,12,22,35,51,…,排成如下数表;观察这个数表,则这个数表中的第八行从左至右第2个数为 .三.提公因式法与公式法的综合运用(共2小题)4.(2022•恩施州)因式分解:a3﹣6a2+9a= .5.(2021•恩施州)分解因式:a﹣ax2= .四.平行线的性质(共1小题)6.(2021•恩施州)如图,已知AE∥BC,∠BAC=100°,∠DAE=50°,则∠C= .五.等腰三角形的性质(共1小题)7.(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2= .六.垂径定理的应用(共1小题)8.(2021•恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径 寸.七.三角形的内切圆与内心(共1小题)9.(2022•恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π) .八.扇形面积的计算(共1小题)10.(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为 .(结果不取近似值)九.坐标与图形变化-旋转(共1小题)11.(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为 .
参考答案与试题解析一.算术平方根(共1小题)1.(2022•恩施州)9的算术平方根是 3 .【解答】解:∵(±3)2=9,∴9的算术平方根是3.故答案为:3.二.规律型:数字的变化类(共2小题)2.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为an,且满足+=.则a4= ,a2022= .【解答】解:由题意可得:a1=2=,a2==,a3=,∵+=,∴2+=7,∴a4==,∵=,∴a5=,同理可求a6==,•••∴an=,∴a2022=,故答案为:,.3.(2021•恩施州)古希腊数学家定义了五边形数,如下表所示,将点按照表中方式排列成五边形点阵,图形中的点的个数即五边形数; 图形…五边形数1512223551…将五边形数1,5,12,22,35,51,…,排成如下数表;观察这个数表,则这个数表中的第八行从左至右第2个数为 1335 .【解答】解:观察表中图形及数字的变化规律可得第n个五边形数可表示为:1+2+3+...+(n﹣1)+n2,由数表可知前七行数的个数和为:1+2+3+...+7=28,∴数表中的第八行从左至右第2个数是第30个五边形数即n=30,∴把n=30代入得:1+2+3+...+29+302=1335,故答案为:1335.三.提公因式法与公式法的综合运用(共2小题)4.(2022•恩施州)因式分解:a3﹣6a2+9a= a(a﹣3)2 .【解答】解:原式=a(a2﹣6a+9)=a(a﹣3)2,故答案为:a(a﹣3)2.5.(2021•恩施州)分解因式:a﹣ax2= a(1+x)(1﹣x) .【解答】解:a﹣ax2=a(1﹣x2)=a(1+x)(1﹣x).故答案为:a(1+x)(1﹣x).四.平行线的性质(共1小题)6.(2021•恩施州)如图,已知AE∥BC,∠BAC=100°,∠DAE=50°,则∠C= 30° .【解答】解:∵∠BAC+∠CAE+∠DAE=180°,∠BAC=100°,∠DAE=50°,∴∠CAE=180°﹣∠BAC﹣∠DAE=180°﹣100°﹣50°=30°,∵AE∥BC,∴∠C=∠CAE=30°,故答案为:30°.五.等腰三角形的性质(共1小题)7.(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2= 40° .【解答】解:如图,延长CB交l1于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.六.垂径定理的应用(共1小题)8.(2021•恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径 26 寸.【解答】解:过圆心O作OC⊥AB于点C,延长OC交圆于点D,连接OA,如图:∵OC⊥AB,∴AC=BC=AB,.则CD=1寸,AC=BC=AB=5寸.设圆的半径为x寸,则OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圆材直径为2×13=26(寸).故答案为:26.七.三角形的内切圆与内心(共1小题)9.(2022•恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π) 5﹣π .【解答】解:作OD⊥AC于点D,作OE⊥CB于点E,作OF⊥AB于点F,连接OA、OC、OB,如图,∵∠C=90°,OD=OE=OF,∴四边形CEOD是正方形,∵AC=4,BC=3,∠C=90°,∴AB===5,∵S△ABC=S△AOC+S△COB+S△BOA,∴=,解得OD=OE=OF=1,∴图中阴影部分的面积为:﹣1×1﹣π×12×=5﹣π,故答案为:5﹣π.八.扇形面积的计算(共1小题)10.(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为 2﹣π .(结果不取近似值)【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=,AC=,∴,∵∠CAB=30°,∴扇形ACD的面积=,∴阴影部分的面积为.故答案为:.九.坐标与图形变化-旋转(共1小题)11.(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为 (﹣1,8) .【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,﹣8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).
相关试卷
这是一份湖北省襄阳市3年(2020-2022)中考数学试卷真题分类汇编-02填空题,共14页。试卷主要包含了化简分式,不等式组的解集是 等内容,欢迎下载使用。
这是一份湖北省齐齐哈尔市三年(2020-2022)中考数学真题分类汇编-02填空题,共18页。试卷主要包含了如图,直线l,的坐标是 等内容,欢迎下载使用。
这是一份湖北省鄂州市三年(2020-2022)中考数学真题分类汇编-02填空题,共16页。试卷主要包含了计算,因式分解等内容,欢迎下载使用。