2022年江苏省姜堰区六校联考中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.下列计算正确的是( )
A.a²+a²=a4 B.(-a2)3=a6
C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b
2.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为( )
A.5 B.6 C.7 D.8
3.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4 B.5 C.6 D.7
4.如图,AB∥CD,AD与BC相交于点O,若∠A=50°10′,∠COD=100°,则∠C等于( )
A.30°10′ B.29°10′ C.29°50′ D.50°10′
5.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为( )
A.1 B.4 C.8 D.12
6.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为( )
A.﹣ B.﹣3 C. D.3
7.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( )
A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣3
8.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第( )象限.
A.一 B.二 C.三 D.四
9.方程的解是( )
A. B. C. D.
10.如图,立体图形的俯视图是
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.因式分解:3x2-6xy+3y2=______.
12.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.
13.请看杨辉三角(1),并观察下列等式(2):
根据前面各式的规律,则(a+b)6= .
14.如图,的半径为1,正六边形内接于,则图中阴影部分图形的面积和为________(结果保留).
15.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.
16.已知一组数据,,﹣2,3,1,6的中位数为1,则其方差为____.
三、解答题(共8题,共72分)
17.(8分)如图,在Rt△ABC中,∠ACB=90°,CD 是斜边AB上的高
(1)△ACD与△ABC相似吗?为什么?
(2)AC2=AB•AD 成立吗?为什么?
18.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
(Ⅰ)求二次函数的解析式及点A,B的坐标;
(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.
19.(8分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:
17
18
16
13
24
15
28
26
18
19
22
17
16
19
32
30
16
14
15
26
15
32
23
17
15
15
28
28
16
19
对这30个数据按组距3进行分组,并整理、描述和分析如下.
频数分布表
组别
一
二
三
四
五
六
七
销售额
频数
7
9
3
2
2
数据分析表
平均数
众数
中位数
20.3
18
请根据以上信息解答下列问题:填空:a= ,b= ,c= ;若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
20.(8分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.
21.(8分)先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.
22.(10分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.
23.(12分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为.
(1)求抛物线C1的表达式;
(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;
(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.
24.如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
A、原式=2a2,不符合题意;
B、原式=-a6,不符合题意;
C、原式=a2+2ab+b2,不符合题意;
D、原式=-4b,符合题意,
故选:D.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
2、B
【解析】
试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.
∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.
考点:作图—基本作图;含30度角的直角三角形.
3、B
【解析】
试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得DC′===1.故选B.
4、C
【解析】
根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°-∠D-∠COD,代入求出即可.
【详解】
∵AB∥CD,
∴∠D=∠A=50°10′,
∵∠COD=100°,
∴∠C=180°-∠D-∠COD=29°50′.
故选C.
【点睛】
本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D的度数和得出∠C=180°-∠D-∠COD.应该掌握的是三角形的内角和为180°.
5、B
【解析】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
【详解】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
则x1、x2为方程ax2+bx+c=0的两根,
∴x1+x2=-,x1•x2=,
∴AB=|x1-x2|====,
∵△ABP组成的三角形恰为等腰直角三角形,
∴||=•,
=,
∴b2-1ac=1.
故选B.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.
6、B
【解析】
设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.
【详解】
设该点的坐标为(a,b),则|b|=1|a|,
∵点(a,b)在正比例函数y=kx的图象上,
∴k=±1.
又∵y值随着x值的增大而减小,
∴k=﹣1.
故选:B.
【点睛】
本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.
7、D
【解析】
先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
【详解】
解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选:D.
【点睛】
本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
8、B
【解析】
根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.
【详解】
∵反比例函数y=的图象在一、三象限,
∴k>0,
∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.
故选:B.
【点睛】
考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.
9、D
【解析】
按照解分式方程的步骤进行计算,注意结果要检验.
【详解】
解:
经检验x=4是原方程的解
故选:D
【点睛】
本题考查解分式方程,注意结果要检验.
10、C
【解析】
试题分析:立体图形的俯视图是C.故选C.
考点:简单组合体的三视图.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3(x﹣y)1
【解析】
试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.
考点:提公因式法与公式法的综合运用
12、m≥且m≠1.
【解析】
根据一元二次方程的定义和判别式的意义得到m﹣1≠0且 然后求出两个不等式的公共部分即可.
【详解】
解:根据题意得m﹣1≠0且
解得且m≠1.
故答案为: 且m≠1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
13、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
【解析】
通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
【详解】
通过观察可以看出(a+b)2的展开式为2次7项式,a的次数按降幂排列,b的次数按升幂排列,各项系数分别为2、2、25、20、25、2、2.
所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.
14、.
【解析】
连接OA,OB,OC,则根据正六边形内接于可知阴影部分的面积等于扇形OAB的面积,计算出扇形OAB的面积即可.
【详解】
解:如图所示,连接OA,OB,OC,
∵正六边形内接于
∴∠AOB=60°,四边形OABC是菱形,
∴AG=GC,OG=BG,∠AGO=∠BGC
∴△AGO≌△BGC.
∴△AGO的面积=△BGC的面积
∵弓形DE的面积=弓形AB的面积
∴阴影部分的面积=弓形DE的面积+△ABC的面积
=弓形AB的面积+△AGB的面积+△BGC的面积
=弓形AB的面积+△AGB的面积+△AGO的面积
=扇形OAB的面积=
=
故答案为.
【点睛】
本题考查了扇形的面积计算公式,利用数形结合进行转化是解题的关键.
15、
【解析】
利用P(A)=,进行计算概率.
【详解】
从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为.
故答案是:.
【点睛】
本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.
16、3
【解析】
试题分析:∵数据﹣3,x,﹣3,3,3,6的中位数为3,∴,解得x=3,∴数据的平均数=(﹣3﹣3+3+3+3+6)=3,∴方差=[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3.
考点:3.方差;3.中位数.
三、解答题(共8题,共72分)
17、(1)△ACD 与△ABC相似;(2)AC2=AB•AD成立.
【解析】
(1)求出∠ADC=∠ACB=90°,根据相似三角形的判定推出即可;
(2)根据相似三角形的性质得出比例式,再进行变形即可.
【详解】
解:(1)△ACD 与△ABC相似,
理由是:∵在 Rt△ABC 中,∠ACB=90°,CD 是斜边AB上的高,
∴∠ADC=∠ACB=90°,
∵∠A=∠A,
∴△ACD∽∠ABC;
(2)AC2=AB•AD成立,理由是:
∵△ACD∽∠ABC,
∴=,
∴AC2=AB•AD.
【点睛】
本题考查了相似三角形的性质和判定,能根据相似三角形的判定定理推出△ACD∽△ABC 是解此题的关键.
18、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).
【解析】
(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
(2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
(3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
【详解】
(Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
令y=0,得到:x2﹣4x﹣5=0,
解得x=﹣1或5,
∴A(﹣1,0),B(5,0).
(Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
把点Q′坐标代入y=﹣x2+4x+5,
得到:m2﹣4m﹣5=﹣m2﹣4m+5,
∴m=或(舍弃),
∴Q(,).
(Ⅲ)如图,作MK⊥对称轴x=2于K.
①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
∵此时点M的横坐标为1,
∴y=8,
∴M(1,8),N(2,13),
②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
此时M′的横坐标为3,可得M′(3,8),N′(2,3).
【点睛】
本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
19、 (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标.
【解析】
根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a=3,b=4,再根据数据可得15出现了5次,出现次数最多,所以众数c=15;
从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;
本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.
【详解】
解:(1)在范围内的数据有3个,在范围内的数据有4个,
15出现的次数最大,则众数为15;
(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;
故答案为3,4,15;8;
(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.
因为中位数为18,即大于18与小于18的人数一样多,
所以月销售额定为18万,有一半左右的营业员能达到销售目标.
【点睛】
本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.
20、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D点坐标为(1,2)或(4,﹣25).
【解析】
(1)设交点式y=a(x+1)(x﹣),展开得到﹣a=3,然后求出a即可得到抛物线解析式;
(2)作AE⊥BC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出∠ACE即可;
(3)作BH⊥CD于H,如图2,设H(m,n),证明Rt△BCH∽Rt△ACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接着通过解方程组得到H(,﹣)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可.
【详解】
(1)设抛物线解析式为y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x2+x+3;
(2)作AE⊥BC于E,如图1,当x=0时,y=﹣2x2+x+3=3,则C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==
AE•BC=OC•AB,∴AE==.
在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;
(3)作BH⊥CD于H,如图2,设H(m,n).
∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①
m2+(n﹣3)2=()2=,②
②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.
当n=﹣时,m=2n+=,此时H(,﹣),易得直线CD的解析式为y=﹣7x+3,解方程组得:或,此时D点坐标为(4,﹣25);
当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=﹣x+3,解方程组得:或,此时D点坐标为(1,2).
综上所述:D点坐标为(1,2)或(4,﹣25).
【点睛】
本题是二次函数综合题.熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
21、
【解析】
根据分式的减法和除法可以化简题目中的式子,然后从﹣<x<的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.
【详解】
解:÷(﹣x+1)
=
=
=
=,
当x=﹣2时,原式= .
【点睛】
本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.
22、证明见解析.
【解析】
试题分析:由可得则可证明,因此可得
试题解析:即,在和中,
考点:三角形全等的判定.
23、(1)y;(2);(3)E(,0).
【解析】
(1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;
(2)由抛物线C1绕点B旋转180°得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;
(3)作GK⊥x轴于G,DH⊥AB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK∽△GFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E坐标.
【详解】
解:(1)∵抛物线C1的顶点为,
∴可设抛物线C1的表达式为y,
将B(﹣1,0)代入抛物线解析式得:,
∴,
解得:a,
∴抛物线C1的表达式为y,即y.
(2)设抛物线C2的顶点坐标为
∵抛物线C1绕点B旋转180°,得到抛物线C2,即点与点关于点B(﹣1,0)对称
∴抛物线C2的顶点坐标为()
可设抛物线C2的表达式为y
∵抛物线C2开口朝下,且形状不变
∴抛物线C2的表达式为y,即.
(3)如图,作GK⊥x轴于G,DH⊥AB于H.
由题意GK=DH=3,AH=HB=EK=KF,
∵四边形AGFD是矩形,
∴∠AGF=∠GKF=90°,
∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,
∴∠AGK=∠GFK.
∵∠AKG=∠FKG=90°,
∴△AGK∽△GFK,
∴,
∴,
∴AK=6,
,
∴BE=BK﹣EK=3,
∴OE,
∴E(,0).
【点睛】
本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.
24、(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.
【解析】
【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;
(2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.
【详解】(1)当x=1时,n=﹣×1+4=1,
∴点B的坐标为(1,1).
∵反比例函数y=过点B(1,1),
∴k=1×1=1;
(2)∵k=1>0,
∴当x>0时,y随x值增大而减小,
∴当2≤x≤1时,1≤y≤2.
【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.
江苏省南京建邺区六校联考2021-2022学年中考适应性考试数学试题含解析: 这是一份江苏省南京建邺区六校联考2021-2022学年中考适应性考试数学试题含解析,共18页。试卷主要包含了如图,,,则的大小是,如图所示的几何体的俯视图是,若2<<3,则a的值可以是,点P等内容,欢迎下载使用。
江苏省海安八校联考2022年中考适应性考试数学试题含解析: 这是一份江苏省海安八校联考2022年中考适应性考试数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,的绝对值是,点P,下列运算中,正确的是等内容,欢迎下载使用。
2022年江苏省泰州医药高新区六校联考中考适应性考试数学试题含解析: 这是一份2022年江苏省泰州医药高新区六校联考中考适应性考试数学试题含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。