终身会员
搜索
    上传资料 赚现金
    2022年江苏省淮安市凌桥乡初级中学中考一模数学试题含解析
    立即下载
    加入资料篮
    2022年江苏省淮安市凌桥乡初级中学中考一模数学试题含解析01
    2022年江苏省淮安市凌桥乡初级中学中考一模数学试题含解析02
    2022年江苏省淮安市凌桥乡初级中学中考一模数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省淮安市凌桥乡初级中学中考一模数学试题含解析

    展开
    这是一份2022年江苏省淮安市凌桥乡初级中学中考一模数学试题含解析,共20页。试卷主要包含了答题时请按要求用笔,分式有意义,则x的取值范围是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是(   )
    A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x2
    2.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是(  )

    A.①④⑤ B.①②④ C.①③④ D.①③⑤
    3.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )

    A. B. C. D.
    4.如图,在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则△DEF的周长是(  )

    A.9.5 B.13.5 C.14.5 D.17
    5.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )

    A. B. C. D.
    6.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
    A.平均数 B.中位数 C.众数 D.方差
    7.分式有意义,则x的取值范围是(  )
    A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣7
    8.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )

    A.94分,96分 B.96分,96分
    C.94分,96.4分 D.96分,96.4分
    9.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C的坐标为(  )

    A.(2,1) B.(1,2) C.(1,3) D.(3,1)
    10.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是(     )

    A.16cm B.18cm C.20cm D.21cm
    二、填空题(共7小题,每小题3分,满分21分)
    11.某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为______.
    12.如果a2﹣a﹣1=0,那么代数式(a﹣)的值是   .
    13.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
    (1)AB的长等于____;
    (2)在△ABC的内部有一点P,满足S△PABS△PBCS△PCA =1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______

    14.已知抛物线 的部分图象如图所示,根据函数图象可知,当 y>0 时,x 的取值范围是__.

    15.抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为_____.

    16.点(1,–2)关于坐标原点 O 的对称点坐标是_____.
    17.不等式组的整数解是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,海中有一个小岛 A,该岛四周 11 海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:≈1.41,≈1.73)

    19.(5分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.
    (1)已知⊙O的半径为1,在点E(1,1),F(﹣,),M(0,-1)中,⊙O的“关联点”为______;
    (2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为,求n的值;
    (3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线y=﹣x+4与x轴,y轴分别交于点A,B.若线段AB上存在⊙D的“关联点”,求m的取值范围.
    20.(8分)如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.

    21.(10分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:

    “祖冲之奖”的学生成绩统计表:
    分数/分
    80
    85
    90
    95
    人数/人
    4
    2
    10
    4
    根据图表中的信息,解答下列问题:
    (1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;
    (2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;
    (3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.
    22.(10分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.

    (1)如图①,当α=60°时,连接DD',求DD'和A'F的长;
    (2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;
    (3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.
    23.(12分)如图,△ABC中,点D在AB上,∠ACD=∠ABC,若AD=2,AB=6,求AC的长.

    24.(14分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知.
    求楼间距AB;
    若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,,,,,




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:
    A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;
    B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;
    C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;
    D、y=3x2的图象平移不能得到y=2x2,故本选项正确.
    故选D.
    2、D
    【解析】
    根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.
    【详解】
    解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4
    故①正确
    则AE=10﹣4=6
    t=10时,△BPQ的面积等于
    ∴AB=DC=8

    故②错误
    当14<t<22时,
    故③正确;
    分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
    则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形
    此时,满足条件的点有4个,故④错误.
    ∵△BEA为直角三角形
    ∴只有点P在DC边上时,有△BPQ与△BEA相似
    由已知,PQ=22﹣t
    ∴当或时,△BPQ与△BEA相似
    分别将数值代入
    或,
    解得t=(舍去)或t=14.1
    故⑤正确
    故选:D.
    【点睛】
    本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
    形判定,应用了分类讨论和数形结合的数学思想.
    3、A
    【解析】
    ∵△DEF是△AEF翻折而成,
    ∴△DEF≌△AEF,∠A=∠EDF,
    ∵△ABC是等腰直角三角形,
    ∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,
    ∴∠BED=∠CDF,
    设CD=1,CF=x,则CA=CB=2,
    ∴DF=FA=2-x,
    ∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
    解得x=,
    ∴sin∠BED=sin∠CDF=.
    故选:A.
    4、B
    【解析】
    由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答.
    【详解】
    ∵在△ABC中,CD⊥AB于点D,E,F分别为AC,BC的中点,
    ∴DE=AC=4.1,DF=BC=4,EF=AB=1,
    ∴△DEF的周长=(AB+BC+AC)=×(10+8+9)=13.1.
    故选B.
    【点睛】
    考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半.
    5、D
    【解析】
    左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.
    【详解】
    请在此输入详解!
    6、B
    【解析】
    总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
    【详解】
    要想知道自己是否入选,老师只需公布第五名的成绩,
    即中位数.
    故选B.
    7、A
    【解析】
    直接利用分式有意义则分母不为零进而得出答案.
    【详解】
    解:分式有意义,
    则x﹣1≠0,
    解得:x≠1.
    故选:A.
    【点睛】
    此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.
    8、D
    【解析】
    解:总人数为6÷10%=60(人),
    则91分的有60×20%=12(人),
    98分的有60-6-12-15-9=18(人),
    第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;
    这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60
    =(552+1128+1110+1761+900)÷60
    =5781÷60
    =96.1.
    故选D.
    【点睛】
    本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键.
    9、D
    【解析】
    过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.
    【详解】
    如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B(0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.

    【点睛】
    本题主要考查一次函数的基本概念。角角边定理、全等三角形的性质以及一次函数的应用,熟练掌握相关知识点是解答的关键.
    10、C
    【解析】
    试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.
    考点:平移的性质.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    试题解析:根据题意得:
    故答案为
    12、1
    【解析】
    分析:先由a2﹣a﹣1=0可得a2﹣a=1,再把(a﹣ )的第一个括号内通分,并把分子分解因式后约分化简,然后把a2﹣a=1代入即可.
    详解:∵a2﹣a﹣1=0,即a2﹣a=1,
    ∴原式=
    =
    =a(a﹣1)
    =a2﹣a=1,
    故答案为1
    点睛:本题考查了分式的化简求值,解题的关键是正确掌握分式混合运算的顺序:先算乘除,后算加减,有括号的先算括号里,整体代入法是求代数式的值常用的一种方法.
    13、; 答案见解析.
    【解析】
    (1)AB==.
    故答案为.
    (2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.

    理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,△PAB的面积=平行四边形ABME的面积,△PBC的面积=平行四边形CDNB的面积,△PAC的面积=△PNG的面积=△DGN的面积=平行四边形DEMG的面积,∴S△PAB:S△PBC:S△PCA=1:2:1.
    14、
    【解析】
    根据抛物线的对称轴以及抛物线与x轴的一个交点,确定抛物线与x轴的另一个交点,再结合图象即可得出答案.
    【详解】
    解:根据二次函数图象可知:
    抛物线的对称轴为直线,与x轴的一个交点为(-1,0),
    ∴抛物线与x轴的另一个交点为(3,0),
    结合图象可知,当 y>0 时,即x轴上方的图象,对应的x 的取值范围是,
    故答案为: .
    【点睛】
    本题考查了二次函数与不等式的问题,解题的关键是通过图象确定抛物线与x轴的另一个交点,并熟悉二次函数与不等式的关系.
    15、x1=1,x2=﹣1.
    【解析】
    直接观察图象,抛物线与x轴交于1,对称轴是x=﹣1,所以根据抛物线的对称性可以求得抛物线与x轴的另一交点坐标,从而求得关于x的一元二次方程﹣x2+bx+c=0的解.
    【详解】
    解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,
    ∴抛物线与x轴的另一交点坐标为(﹣1,0),
    ∴一元二次方程﹣x2+bx+c=0的解为x1=1,x2=﹣1.
    故本题答案为:x1=1,x2=﹣1.
    【点睛】
    本题考查了二次函数与一元二次方程的关系.一元二次方程-x2+bx+c=0的解实质上是抛物线y=-x2+bx+c与x轴交点的横坐标的值.
    16、(-1,2)
    【解析】
    根据两个点关于原点对称时,它们的坐标符号相反可得答案.
    【详解】
    A(1,-2)关于原点O的对称点的坐标是(-1,2),
    故答案为:(-1,2).
    【点睛】
    此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
    17、﹣1、0、1
    【解析】
    求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.
    【详解】

    解不等式得:,
    解不等式得:,
    不等式组的解集为,
    不等式组的整数解为-1,0,1.
    故答案为:-1,0,1.
    【点睛】
    本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.

    三、解答题(共7小题,满分69分)
    18、不会有触礁的危险,理由见解析.
    【解析】
    分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据可得关于x的方程,解之可得.
    详解:过点A作AH⊥BC,垂足为点H.

    由题意,得∠BAH=60°,∠CAH=45°,BC=1.
    设AH=x,则CH=x.
    在Rt△ABH中,∵,
    解得:.
    ∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.
    点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    19、(1)F,M;(1)n=1或﹣1;(3)≤m≤或 ≤m≤.
    【解析】
    (1)根据定义,认真审题即可解题,
    (1)在直角三角形PHQ中勾股定理解题即可,
    (3)当⊙D与线段AB相切于点T时,由sin∠OBA=,得DT=DH1=,进而求出m1=即可,②当⊙D过点A时,连接AD.由勾股定理得DA==DH1=即可解题.
    【详解】
    解:(1)∵OF=OM=1,
    ∴点F、点M在⊙上,
    ∴F、M是⊙O的“关联点”,
    故答案为F,M.
    (1)如图1,过点Q作QH⊥x轴于H.

    ∵PH=1,QH=n,PQ=.
    ∴由勾股定理得,PH1+QH1=PQ1,
    即11+n1=()1,
    解得,n=1或﹣1.
    (3)由y=﹣x+4,知A(3,0),B(0,4)
    ∴可得AB=5
    ①如图1(1),当⊙D与线段AB相切于点T时,连接DT.

    则DT⊥AB,∠DTB=90°
    ∵sin∠OBA=,
    ∴可得DT=DH1=,
    ∴m1=,
    ②如图1(1),当⊙D过点A时,连接AD.

    由勾股定理得DA==DH1=.
    综合①②可得:≤m≤或 ≤m≤.
    【点睛】
    本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.
    20、38+12
    【解析】
    根据∠ABC=90°,AE=CE,EB=12,求出AC,根据Rt△ABC中,∠CAB=30°,BC=12,求出根据DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案.
    【详解】
    ∵∠ABC=90°,AE=CE,EB=12,
    ∴EB=AE=CE=12,
    ∴AC=AE+CE=24,
    ∵在Rt△ABC中,∠CAB=30°,
    ∴BC=12,
    ∵DE⊥AC,AE=CE,
    ∴AD=DC,
    在Rt△ADE中,由勾股定理得
    ∴DC=13,
    ∴四边形ABCD的周长=AB+BC+CD+DA=
    【点睛】
    此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长.
    21、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限).
    【解析】
    (1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;
    (2)根据中位数和众数的定义求解可得;
    (3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.
    【详解】
    (1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:

    故答案为40;
    (2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.
    故答案为90、90;
    (3)列表法:

    ∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
    【点睛】
    本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
    22、(1)DD′=1,A′F= 4﹣;(2);(1).
    【解析】
    (1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;
    ②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;
    (2)由△A′DF∽△A′D′C,可推出DF的长,同理可得△CDE∽△CB′A′,可求出DE的长,即可解决问题;
    (1)如图③中,作FG⊥CB′于G,由S△ACF=•AC•CF=•AF•CD,把问题转化为求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;
    【详解】
    解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',
    ∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.
    ∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,
    ∴DD′=CD=1.
    ②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,
    ∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.
    在Rt△CD′F中,∵tan∠D′CF=,
    ∴D′F=,∴A′F=A′D′﹣D′F=4﹣.
    (2)如图②中,在Rt△A′CD′中,∵∠D′=90°,
    ∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,
    ∴△A′DF∽△A′D′C,∴,∴,
    ∴DF=.
    同理可得△CDE∽△CB′A′,∴,∴,
    ∴ED=,∴EF=ED+DF=.
    (1)如图③中,作FG⊥CB′于G.∵四边形A′B′CD′是矩形,∴GF=CD′=CD=1.
    ∵S△CEF=•EF•DC=•CE•FG,
    ∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.
    ∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,
    ∴AC2=AD•AF,∴AF=.
    ∵S△ACF=•AC•CF=•AF•CD,
    ∴AC•CF=AF•CD=.

    23、.
    【解析】
    试题分析:可证明△ACD∽△ABC,则,即得出AC2=AD•AB,从而得出AC的长.
    试题解析:∵∠ACD=∠ABC,∠A=∠A, ∴△ACD∽△ABC. ∴,∵AD=2,AB=6,∴.∴.∴AC=.
    考点:相似三角形的判定与性质.
    24、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
    【解析】
    如图,作于M,于则,设想办法构建方程即可解决问题.
    求出AC,AD,分两种情形解决问题即可.
    【详解】
    解:如图,作于M,于则,设.
    在中,,
    在中,,



    的长为50m.

    由可知:,
    ,,
    ,,
    冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响.
    【点睛】
    考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.

    相关试卷

    2023-2024学年江苏省淮安市凌桥乡初级中学九年级数学第一学期期末复习检测模拟试题含答案: 这是一份2023-2024学年江苏省淮安市凌桥乡初级中学九年级数学第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了下列结论正确的是等内容,欢迎下载使用。

    江苏省淮安市凌桥乡初级中学2023-2024学年数学八上期末综合测试试题含答案: 这是一份江苏省淮安市凌桥乡初级中学2023-2024学年数学八上期末综合测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,一次函数的图象与轴的交点坐标是等内容,欢迎下载使用。

    2023-2024学年江苏省淮安市凌桥乡初级中学八年级数学第一学期期末达标测试试题含答案: 这是一份2023-2024学年江苏省淮安市凌桥乡初级中学八年级数学第一学期期末达标测试试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各组数中,是方程的解的是,的值是,将点M,如图,已知点A等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map