2022年江苏省沭阳县中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为( )
A.10 B.8 C.5 D.3
2.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0; ②﹣1≤a≤; ③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为( )
A.1个 B.2个 C.3个 D.4个
3.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )
A.线段DB绕点D顺时针旋转一定能与线段DC重合
B.线段DB绕点D顺时针旋转一定能与线段DI熏合
C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
D.线段ID绕点I顺时针旋转一定能与线段IB重合
4.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )
A.0.2 B.0.25 C.0.4 D.0.5
5.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是( )
A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)2
6.已知3x+y=6,则xy的最大值为( )
A.2 B.3 C.4 D.6
7.一次函数y=2x+1的图像不经过 ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是( )
A.2 B.-2 C.4 D.-4
9.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )
A. B. C. D.
10.﹣2的绝对值是( )
A.2 B. C. D.
11.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为( )
A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3
C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm3
12.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( )
A.10cm B.30cm C.45cm D.300cm
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是_____.
14.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.
15.如图,在平面直角坐标系中,点A(0,6),点B在x轴的负半轴上,将线段AB绕点A逆时针旋转90°至AB',点M是线段AB'的中点,若反比例函数y=(k≠0)的图象恰好经过点B'、M,则k=_____.
16.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.
17.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=_______°.
18.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且AC⊥x轴.
(1)已知A(-3,0),B(-1,0),AC=OA.
①求抛物线解析式和直线OC的解析式;
②点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)
(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EG⊥x轴于G,连CG,BF,求证:CG∥BF
20.(6分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.请直接写出y与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?
21.(6分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.
(1)若a=1,求反比例函数的解析式及b的值;
(2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?
(3)若a﹣b=4,求一次函数的函数解析式.
22.(8分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若tan∠BAD=,且OC=4,求BD的长.
23.(8分)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,和的顶点都在格点上,回答下列问题:
可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:______;
画出绕点B逆时针旋转的图形;
在中,点C所形成的路径的长度为______.
24.(10分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
(1)求证:EF是⊙O的切线;
(2)求证:=4BP•QP.
25.(10分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
(1)求A、B两种钢笔每支各多少元?
(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
26.(12分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).
(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=l.
①点A、B、C在此斜坐标系内的坐标分别为A ,B ,C .
②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 .
③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 .
(2)若ω=120°,O为坐标原点.
①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=4 ,求圆M的半径及圆心M的斜坐标.
②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 .
27.(12分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:
LED灯泡
普通白炽灯泡
进价(元)
45
25
标价(元)
60
30
(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
∵摸到红球的概率为,
∴,
解得n=8,
故选B.
2、C
【解析】
①由抛物线的顶点横坐标可得出b=-2a,进而可得出4a+2b=0,结论①错误;
②利用一次函数图象上点的坐标特征结合b=-2a可得出a=-,再结合抛物线与y轴交点的位置即可得出-1≤a≤-,结论②正确;
③由抛物线的顶点坐标及a<0,可得出n=a+b+c,且n≥ax2+bx+c,进而可得出对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线下移可得出抛物线y=ax2+bx+c与直线y=n-1有两个交点,进而可得出关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
【详解】
:①∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,结论①错误;
②∵抛物线y=ax2+bx+c与x轴交于点A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵抛物线y=ax2+bx+c与y轴的交点在(0,2),(0,3)之间(包含端点),
∴2≤c≤3,
∴-1≤a≤-,结论②正确;
③∵a<0,顶点坐标为(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;
④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
又∵a<0,
∴抛物线开口向下,
∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.
故选C.
【点睛】
本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.
3、D
【解析】
解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正确,不符合题意;
∴=,∴BD=CD,故A正确,不符合题意;
∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意.
故选D.
点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.
4、B
【解析】
设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.
【详解】
解:设大正方形边长为2,则小正方形边长为1,
因为面积比是相似比的平方,
所以大正方形面积为4,小正方形面积为1,
则针孔扎到小正方形(阴影部分)的概率是;
故选:B.
【点睛】
本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
5、A
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.
故选A.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
6、B
【解析】
根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x2+6x,利用配方法求该式的最值.
【详解】
解:∵1x+y=6,
∴y=-1x+6,
∴xy=-1x2+6x=-1(x-1)2+1.
∵(x-1)2≥0,
∴-1(x-1)2+1≤1,即xy的最大值为1.
故选B.
【点睛】
考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy的最大值.
7、D
【解析】
根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.
【详解】
∵k=2>0,b=1>0,
∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.
故选D.
【点睛】
本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.
8、C
【解析】
对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.
即16-4k=0,解得:k=4.
考点:一元二次方程根的判别式
9、B
【解析】
由题意可知,
当时,;
当时,
;
当时,.∵时,;时,.∴结合函数解析式,
可知选项B正确.
【点睛】
考点:1.动点问题的函数图象;2.三角形的面积.
10、A
【解析】
分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.
11、A
【解析】
试题分析:0.001219=1.219×10﹣1.故选A.
考点:科学记数法—表示较小的数.
12、A
【解析】
根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。
【详解】
直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形
假设每个圆锥容器的地面半径为
解得
故答案选A.
【点睛】
本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
由n行有n个数,可得出第10行第8个数为第1个数,结合奇数为正偶数为负,即可求出结论.
【详解】
解:第1行1个数,第2行2个数,第3行3个数,…,
∴第9行9个数,
∴第10行第8个数为第1+2+3+…+9+8=1个数.
又∵第2n﹣1个数为2n﹣1,第2n个数为﹣2n,
∴第10行第8个数应该是1.
故答案为:1.
【点睛】
本题考查了规律型中数字的变化类,根据数的变化找出变化规律是解题的关键.
14、3
【解析】
在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.
【详解】
解:根据题意得,=0.3,解得m=3.
故答案为:3.
【点睛】
本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.
15、12
【解析】
根据题意可以求得点B'的横坐标,然后根据反比例函数y=(k≠0)的图象恰好经过点B'、M,从而可以求得k的值.
【详解】
解:作B′C⊥y轴于点C,如图所示,
∵∠BAB′=90°,∠AOB=90°,AB=AB′,
∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,
∴∠ABO=∠BA′C,
∴△ABO≌△BA′C,
∴AO=B′C,
∵点A(0,6),
∴B′C=6,
设点B′的坐标为(6,),
∵点M是线段AB'的中点,点A(0,6),
∴点M的坐标为(3,),
∵反比例函数y=(k≠0)的图象恰好经过点M,
∴=,
解得,k=12,
故答案为:12.
【点睛】
本题考查反比例函数图象上点的坐标特征、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.
16、
【解析】
首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.
【详解】
列表如下:
﹣2
﹣1
2
﹣2
2
﹣4
﹣1
2
﹣2
2
﹣4
﹣2
由表可知,共有6种等可能结果,其中积为正数的有2种结果,
所以积为正数的概率为,
故答案为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
17、15
【解析】
根据圆的基本性质得出四边形OABC为菱形,∠AOB=60°,然后根据同弧所对的圆心角与圆周角之间的关系得出答案.
【详解】
解:∵OABC为平行四边形,OA=OC=OB,
∴四边形OABC为菱形,∠AOB=60°,
∵OD⊥AB,
∴∠BOD=30°,
∴∠BAD=30°÷2=15°.
故答案为:15.
【点睛】
本题主要考查的是圆的基本性质问题,属于基础题型.根据题意得出四边形OABC为菱形是解题的关键.
18、1
【解析】
∵骑车的学生所占的百分比是×100%=35%,
∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,
∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),
故答案为1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1)①y=-x2-4x-3;y=x;②t= 或;(2)证明见解析.
【解析】
(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;②由题意得OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
得OH=HQ=t,可得Q(-t,-t),直线 PQ为y=-x-2t,过M作MG⊥x轴于G,由,则2PG=GH,由,得, 于是,解得,从而求出M(-3t,t)或M(),再分情况计算即可; (2) 过F作FH⊥x轴于H,想办法证得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得证.
【详解】
解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得解得
∴y=-x2-4x-3;
由AC=OA知C点坐标为(-3,-3),∴直线OC的解析式y=x;
②OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
∵QO=,∴OH=HQ=t,
∴Q(-t,-t),∴PQ:y=-x-2t,
过M作MG⊥x轴于G,
∴,
∴2PG=GH
∴,即,
∴ ,
∴,
∴M(-3t,t)或M()
当M(-3t,t)时:,
∴
当M()时:,
∴
综上:或
(2)设A(m,0)、B(n,0),
∴m、n为方程x2-bx-c=0的两根,
∴m+n=b,mn=-c,
∴y=-x2+(m+n)x-mn=-(x-m)(x-n),
∵E、F在抛物线上,设、,
设EF:y=kx+b,
∴ ,
∴
∴
∴,令x=m
∴
=
∴AC=,
又∵,
∴tan∠CAG=,
另一方面:过F作FH⊥x轴于H,
∴,,
∴tan∠FBH=
∴tan∠CAG=tan∠FBH
∴∠CAG=∠FBH
∴CG∥BF
【点睛】
此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.
20、(1)y=﹣10x+740(44≤x≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
【解析】
(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x﹣44)元,每天销售量减少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;
(2)利用每本的利润乘以销售量得到总利润得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范围确定销售单价;
(3)利用每本的利润乘以销售量得到总利润得到w=(x﹣40)(﹣10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.
【详解】
(1)y=300﹣10(x﹣44),
即y=﹣10x+740(44≤x≤52);
(2)根据题意得(x﹣40)(﹣10x+740)=2400,
解得x1=50,x2=64(舍去),
答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;
(3)w=(x﹣40)(﹣10x+740)
=﹣10x2+1140x﹣29600
=﹣10(x﹣57)2+2890,
当x<57时,w随x的增大而增大,
而44≤x≤52,
所以当x=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,
答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.
【点睛】
本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.
21、 (1) 反比例函数的解析式为y=,b的值为﹣1;(1) 当x<﹣4或0<x<1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为y=x+1
【解析】
(1)由题意得到A(1,4),设反比例函数的解析式为y=(k≠0),根据待定系数法即可得到反比例函数解析式为y=;再由点B(﹣4,b)在反比例函数的图象上,得到b=﹣1;
(1)由(1)知A(1,4),B(﹣4,﹣1),结合图象即可得到答案;
(3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,因为A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,得到, 解得p=8,a=1,b=﹣1,则A(1,4),B(﹣4,﹣1),由点A、点B在一次函数y=mx+n图象上,得到,解得,即可得到答案.
【详解】
(1)若a=1,则A(1,4),
设反比例函数的解析式为y=(k≠0),
∵点A在反比例函数的图象上,
∴4=,
解得k=4,
∴反比例函数解析式为y=;
∵点B(﹣4,b)在反比例函数的图象上,
∴b==﹣1,
即反比例函数的解析式为y=,b的值为﹣1;
(1)由(1)知A(1,4),B(﹣4,﹣1),
根据图象:当x<﹣4或0<x<1时,反比例函数大于一次函数的值;
(3)设一次函数的解析式为y=mx+n(m≠0),反比例函数的解析式为y=,
∵A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点,
∴,即,
①+②得4a﹣4b=1p,
∵a﹣b=4,
∴16=1p,
解得p=8,
把p=8代入①得4a=8,代入②得﹣4b=8,
解得a=1,b=﹣1,
∴A(1,4),B(﹣4,﹣1),
∵点A、点B在一次函数y=mx+n图象上,
∴
解得
∴一次函数的解析式为y=x+1.
【点睛】
本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.
22、(1)证明见解析;(2)
【解析】
试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;
(2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.
试题解析:(1)连结OB,则OA=OB.如图1,
∵OP⊥AB,
∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.
在△PAO和△PBO中,
∵,
∴△PAO≌△PBO(SSS),
∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,
∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;
(2)连结BE.如图2,
∵在Rt△AOC中,tan∠BAD=tan∠CAO=,且OC=4,
∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,
∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,
∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得PB=,
∵AC=BC,OA=OE,即OC为△ABE的中位线.
∴OC=BE,OC∥BE,∴BE=2OC=3.
∵BE∥OP,∴△DBE∽△DPO,
∴,即,解得BD=.
23、(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3).
【解析】
(1)△ABC先沿y轴翻折,再向右平移1个单位,向下平移3个单位;或先向左平移1个单位,向下平移3个单位,再沿y轴翻折,即可得到△DEF;
按照旋转中心、旋转角度以及旋转方向,即可得到△ABC绕点B逆时针旋转 的图形△ ;
依据点C所形成的路径为扇形的弧,利用弧长计算公式进行计算即可.
【详解】
解:(1)答案不唯一例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折.
(2)分别将点C、A绕点B逆时针旋转得到点 、 ,如图所示,△即为所求;
(3)点C所形成的路径的长为:.
故答案为(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)π.
.
【点睛】
本题考查坐标与图形变化旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.
24、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;
(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.
试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;
(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.
考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.
25、(1) A种钢笔每只15元 B种钢笔每只20元;
(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;
(3) 定价为33元或34元,最大利润是728元.
【解析】
(1)设A种钢笔每只x元,B种钢笔每支y元,
由题意得 ,
解得: ,
答:A种钢笔每只15元,B种钢笔每支20元;
(2)设购进A种钢笔z支,
由题意得:,
∴42.4≤z<45,
∵z是整数
z=43,44,
∴90-z=47,或46;
∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,
方案二:购进A种钢笔44只,购进B种钢笔46只;
(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-)²+729,
∵-4<0,∴W有最大值,∵a为正整数,
∴当a=3,或a=4时,W最大,
∴W最大==-4×(3-)²+729=728,30+a=33,或34;
答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.
26、(1)①(2,0),(1,),(﹣1,);②y=x;③ y=x,y=﹣x+;(2)①半径为4,M(,);②﹣1<r<+1.
【解析】
(1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;
(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题.
【详解】
(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,
由题意OC=CD=1,OA=BC=2,
∴BD=OE=1,OD=CF=BE=,
∴A(2,0),B(1,),C(﹣1,),
故答案为(2,0),(1,),(﹣1,);
②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,
∵OD∥BE,OD∥PM,
∴BE∥PM,
∴=,
∴,
∴y=x;
③如图2﹣3中,作QM∥OA交OD于M,
则有,
∴,
∴y=﹣x+,
故答案为y=x,y=﹣x+;
(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,
∵ω=120°,OM⊥y轴,
∴∠MOA=30°,
∵MF⊥OA,OA=4,
∴OF=FA=2,
∴FM=2,OM=2FM=4,
∵MN∥y轴,
∴MN⊥OM,
∴MN=,ON=2MN=,
∴M(,);
②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.
∵MK∥x轴,ω=120°,
∴∠MKO=60°,
∵MK=OK=2,
∴△MKO是等边三角形,
∴MN=,
当FN=1时,MF=﹣1,
当EN=1时,ME=+1,
观察图象可知当⊙M的半径r的取值范围为﹣1<r<+1.
故答案为:﹣1<r<+1.
【点睛】
本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.
27、(1)LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.
【解析】
1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;
(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120-a)个,这批灯泡的总利润为W元,利用利润的意义得到W=(60-45)a+(30-25)(120-a)=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题.
【详解】
(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个.根据题意,得
解得
答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个.
(2)设该商场再次购进LED灯泡a个,这批灯泡的总利润为W元.则购进普通白炽灯泡(120﹣a)个.根据题意得
W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.
∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,
∵k=10>0,∴W随a的增大而增大,
∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.
答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元.
【点睛】
本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.
2024年江苏省宿迁市沭阳县中考数学一模试卷(含解析): 这是一份2024年江苏省宿迁市沭阳县中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省宿迁市沭阳县中考数学一模试卷(含解析): 这是一份2024年江苏省宿迁市沭阳县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省宿迁市沭阳县中考数学一模试卷 (含解析): 这是一份2024年江苏省宿迁市沭阳县中考数学一模试卷 (含解析),共27页。试卷主要包含了选择题等内容,欢迎下载使用。