2022年江苏省泰州市兴化市顾庄区中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.二次函数的对称轴是
A.直线 B.直线 C.y轴 D.x轴
2.我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是( )
A. B. C. D.
3.一元一次不等式组的解集中,整数解的个数是( )
A.4 B.5 C.6 D.7
4.化简÷的结果是( )
A. B. C. D.2(x+1)
5.已知反比例函数y=﹣,当1<x<3时,y的取值范围是( )
A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣2
6.估计的值在 ( )
A.4和5之间 B.5和6之间
C.6和7之间 D.7和8之间
7.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为( )
A. B. C. D.
8.如图,BD∥AC,BE平分∠ABD,交AC于点E,若∠A=40°,则∠1的度数为( )
A.80° B.70° C.60° D.40°
9.比较4,,的大小,正确的是( )
A.4<< B.4<<
C.<4< D.<<4
10.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为
A.4-π B.2-π
C.4-π D.2-π
二、填空题(共7小题,每小题3分,满分21分)
11.如果不等式组的解集是x<2,那么m的取值范围是_____
12.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
13.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.
14.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.
15.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则tan∠AEF的值是_____.
16.化简÷=_____.
17.点(a-1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是________.
三、解答题(共7小题,满分69分)
18.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.
19.(5分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围.
20.(8分)如图,在矩形ABCD的外侧,作等边三角形ADE,连结BE,CE,求证:BE=CE.
21.(10分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项,,,第二道单选题有4个选项,,,,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题:
(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;
(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;
(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.
22.(10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:
2017年“五•一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
23.(12分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.
(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.
24.(14分)如图:求作一点P,使,并且使点P到的两边的距离相等.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.
【详解】
解:二次函数y=x2的对称轴为y轴.
故选:C .
【点睛】
本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).
2、C
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到矩形的图形.
【详解】
A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;
C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.
故选C.
【点睛】
本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答.
3、C
【解析】
试题分析:∵解不等式得:,解不等式,得:x≤5,∴不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C.
考点:一元一次不等式组的整数解.
4、A
【解析】
原式利用除法法则变形,约分即可得到结果.
【详解】
原式=•(x﹣1)=.
故选A.
【点睛】
本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.
5、D
【解析】
根据反比例函数的性质可以求得y的取值范围,从而可以解答本题.
【详解】
解:∵反比例函数y=﹣,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<y<﹣1.
故选D.
【点睛】
本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答.
6、C
【解析】
根据 ,可以估算出位于哪两个整数之间,从而可以解答本题.
【详解】
解:∵
即
故选:C.
【点睛】
本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.
7、D
【解析】
如图,连接AB,
由圆周角定理,得∠C=∠ABO,
在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,
∴.
故选D.
8、B
【解析】
根据平行线的性质得到根据BE平分∠ABD,即可求出∠1的度数.
【详解】
解:∵BD∥AC,
∴
∵BE平分∠ABD,
∴
故选B.
【点睛】
本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键.
9、C
【解析】
根据4=<且4=>进行比较
【详解】
解:易得:4=<且4=>,
所以<4<
故选C.
【点睛】
本题主要考查开平方开立方运算。
10、B
【解析】
由S阴影=S△OAE-S扇形OAF,分别求出S△OAE、S扇形OAF即可;
【详解】
连接OA,OD
∵OF⊥AD,
∴AC=CD=,
在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,
则∠DOA=120°,OA=2,
∴Rt△OAE中,∠AOE=60°,OA=2
∴AE=2,S阴影=S△OAE-S扇形OAF=×2×2-.
故选B.
【点睛】
考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
二、填空题(共7小题,每小题3分,满分21分)
11、m≥1.
【解析】
分析:先解第一个不等式,再根据不等式组的解集是x<1,从而得出关于m的不等式,解不等式即可.
详解:解第一个不等式得,x<1,
∵不等式组的解集是x<1,
∴m≥1,
故答案为m≥1.
点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.
12、
【解析】
先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
【详解】
由根与系数的关系得:m+n=,mn=,
∴m2+n2=(m+n)2-2mn=()2-2×=,
故答案为:.
【点睛】
本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
13、5.2
【解析】
分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.
详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8,
∴方差为:.
点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.
14、m>-1
【解析】
首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.
【详解】
解:,
①+②得1x+1y=1m+4,
则x+y=m+1,
根据题意得m+1>0,
解得m>﹣1.
故答案是:m>﹣1.
【点睛】
本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.
15、1.
【解析】
连接AF,由E是CD的中点、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,则可证△ABF≌△FCE,进一步可得到△AFE是等腰直角三角形,则∠AEF=45°.
【详解】
解:连接AF,
∵E是CD的中点,
∴CE=,AB=2,
∵FC=2BF,AD=3,
∴BF=1,CF=2,
∴BF=CE,FC=AB,
∵∠B=∠C=90°,
∴△ABF≌△FCE,
∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,
∴∠AFE=90°,
∴△AFE是等腰直角三角形,
∴∠AEF=45°,
∴tan∠AEF=1.
故答案为:1.
【点睛】
本题结合三角形全等考查了三角函数的知识.
16、x+1
【解析】
分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.
详解:解:原式=÷
=•(x+1)(x﹣1)
=x+1,
故答案为x+1.
点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.
17、﹣1<a<1
【解析】
解:∵k>0,
∴在图象的每一支上,y随x的增大而减小,
①当点(a-1,y1)、(a+1,y2)在图象的同一支上,
∵y1<y2,
∴a-1>a+1,
解得:无解;
②当点(a-1,y1)、(a+1,y2)在图象的两支上,
∵y1<y2,
∴a-1<0,a+1>0,
解得:-1<a<1.
故答案为:-1<a<1.
【点睛】
本题考查反比例函数的性质.
三、解答题(共7小题,满分69分)
18、(1)见解析(2)BD=2
【解析】
解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°.
∵在Rt△ACD和Rt△AED中,,
∴Rt△ACD≌Rt△AED(HL).
(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.
∵DE⊥AB,∴∠DEB=90°.
∵∠B=30°,∴BD=2DE=2.
(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.
(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.
19、 (1)y=,y=−x−1;(2)x<−2或0<x<1
【解析】
(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;
(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.
【详解】
(1)∵A(−2,1)在反比例函数y=的图象上,
∴1=,解得m=−2.
∴反比例函数解析式为y=,
∵B(1,n)在反比例函数上,
∴n=−2,
∴B的坐标(1,−2),
把A(−2,1),B(1,−2)代入y=kx+b得
解得:
∴一次函数的解析式为y=−x−1;
(2)由图像知:当x<−2或0<x<1时,一次函数的值大于反比例函数的值.
【点睛】
本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.
20、证明见解析.
【解析】
要证明BE=CE,只要证明△EAB≌△EDC即可,根据题意目中的条件,利用矩形的性质和等边三角形的性质可以得到两个三角形全等的条件,从而可以解答本题.
【详解】
证明:∵四边形ABCD是矩形,
∴AB=CD,∠BAD=∠CDA=90°,
∵△ADE是等边三角形,
∴AE=DE,∠EAD=∠EDA=60°,
∴∠EAD=∠EDC,
在△EAB和△EDC中,
∴△EAB≌△EDC(SAS),
∴BE=CE.
【点睛】
本题考查矩形的性质、等边三角形的性质、全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
21、(1);(2);(3)一.
【解析】
(1)直接利用概率公式求解;
(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;
(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.
【详解】
解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;
故答案为;
(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是.理由如下:
画树状图为:(用Z表示正确选项,C表示错误选项)
共有9种等可能的结果数,其中小颖顺利通关的结果数为1,
所以小敏顺利通关的概率=;
(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)
共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,
由于>,
所以建议小敏在答第一道题时使用“求助”.
【点睛】
本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.
22、(1)50,108°,补图见解析;(2)9.6;(3).
【解析】
(1)根据A景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;
(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;
(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.
【详解】
解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),
A景点所对应的圆心角的度数是:30%×360°=108°,
B景点接待游客数为:50×24%=12(万人),
补全条形统计图如下:
(2)∵E景点接待游客数所占的百分比为:×100%=12%,
∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);
(3)画树状图可得:
∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,
∴同时选择去同一个景点的概率=.
【点睛】
本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.
23、(1);(2)他们获奖机会不相等,理由见解析.
【解析】
(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.
【详解】
(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
∴获奖的概率是;
故答案为;
(2)他们获奖机会不相等,理由如下:
小芳:
| 笑1 | 笑2 | 哭1 | 哭2 |
笑1 | 笑1,笑1 | 笑2,笑1 | 哭1,笑1 | 哭2,笑1 |
笑2 | 笑1,笑2 | 笑2,笑2 | 哭1,笑2 | 哭2,笑2 |
哭1 | 笑1,哭1 | 笑2,哭1 | 哭1,哭1 | 哭2,哭1 |
哭2 | 笑1,哭2 | 笑2,哭2 | 哭1,哭2 | 哭2,哭2 |
∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,
∴P(小芳获奖)=;
小明:
| 笑1 | 笑2 | 哭1 | 哭2 |
笑1 |
| 笑2,笑1 | 哭1,笑1 | 哭2,笑1 |
笑2 | 笑1,笑2 |
| 哭1,笑2 | 哭2,笑2 |
哭1 | 笑1,哭1 | 笑2,哭1 |
| 哭2,哭1 |
哭2 | 笑1,哭2 | 笑2,哭2 | 哭1,哭2 |
|
∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,
∴P(小明获奖)=,
∵P(小芳获奖)≠P(小明获奖),
∴他们获奖的机会不相等.
【点睛】
本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
24、见解析
【解析】
利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.
【详解】
如图所示:P点即为所求.
【点睛】
本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.
江苏省兴化市顾庄区2022年毕业升学考试模拟卷数学卷含解析: 这是一份江苏省兴化市顾庄区2022年毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了答题时请按要求用笔,满足不等式组的整数解是,的相反数是,下列运算正确的是等内容,欢迎下载使用。
江苏省兴化市顾庄学区2021-2022学年中考数学模拟试题含解析: 这是一份江苏省兴化市顾庄学区2021-2022学年中考数学模拟试题含解析,共24页。试卷主要包含了八边形的内角和为等内容,欢迎下载使用。
2022届江苏省兴化市顾庄区三校毕业升学考试模拟卷数学卷含解析: 这是一份2022届江苏省兴化市顾庄区三校毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了点A等内容,欢迎下载使用。