|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年江苏省扬州市中考联考数学试卷含解析
    立即下载
    加入资料篮
    2022年江苏省扬州市中考联考数学试卷含解析01
    2022年江苏省扬州市中考联考数学试卷含解析02
    2022年江苏省扬州市中考联考数学试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年江苏省扬州市中考联考数学试卷含解析

    展开
    这是一份2022年江苏省扬州市中考联考数学试卷含解析,共23页。试卷主要包含了方程x2﹣3x+2=0的解是,如图,,,则的大小是,的绝对值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )
    A. B. C. D.
    2.下列说法正确的是( )
    A.“买一张电影票,座位号为偶数”是必然事件
    B.若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则甲组数据比乙组数据稳定
    C.一组数据2,4,5,5,3,6的众数是5
    D.一组数据2,4,5,5,3,6的平均数是5
    3.对于函数y=,下列说法正确的是(  )
    A.y是x的反比例函数 B.它的图象过原点
    C.它的图象不经过第三象限 D.y随x的增大而减小
    4.在下列四个标志中,既是中心对称又是轴对称图形的是(  )
    A. B. C. D.
    5.方程x2﹣3x+2=0的解是(  )
    A.x1=1,x2=2 B.x1=﹣1,x2=﹣2
    C.x1=1,x2=﹣2 D.x1=﹣1,x2=2
    6.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )
    A.若AB=CD,则四边形ABCD一定是等腰梯形;
    B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;
    C.若,则四边形ABCD一定是矩形;
    D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.
    7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为(  )
    A.5 B.﹣1 C.2 D.﹣5
    8.如图,,,则的大小是  

    A. B. C. D.
    9.的绝对值是(  )
    A.﹣4 B. C.4 D.0.4
    10.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为(  )

    A.4 B.5 C.6 D.7
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.
    12.如图,的半径为1,正六边形内接于,则图中阴影部分图形的面积和为________(结果保留).

    13.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .
    14.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.

    15.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.

    16.如图AB是直径,C、D、E为圆周上的点,则______.

    三、解答题(共8题,共72分)
    17.(8分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.
    (1)画出△A1B1C;
    (2)A的对应点为A1,写出点A1的坐标;
    (3)求出B旋转到B1的路线长.

    18.(8分) 如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),抛物线的对称轴直线x=交x轴于点D.
    (1)求抛物线的解析式;
    (2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,交x轴于点G,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
    (3)在(2)的条件下,将线段FG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段FG与抛物线交于点N,在线段GB上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

    19.(8分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,,且.

    (1)用含的代数式表示;
    (2)连结交于点,若,求的长.
    20.(8分)如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.
    (1)求m的值及一次函数解析式;
    (2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.

    21.(8分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.求证:EF是⊙O的切线;已知AB=4,AE=1.求BF的长.

    22.(10分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
    月份x
    1
    2
    3
    4
    5
    6
    7
    8
    9
    价格y1(元/件)
    560
    580
    600
    620
    640
    660
    680
    700
    720
    随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
    (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
    (2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.

    23.(12分)如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°
    求证:(1)△PAC∽△BPD;
    (2)若AC=3,BD=1,求CD的长.

    24.如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
    (1)求抛物线的解析式;
    (2)当PO+PC的值最小时,求点P的坐标;
    (3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    作出树状图即可解题.
    【详解】
    解:如下图所示

    一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,
    故选A.
    【点睛】
    本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.
    2、C
    【解析】
    根据确定性事件、方差、众数以及平均数的定义进行解答即可.
    【详解】
    解:A、“买一张电影票,座位号为偶数”是随机事件,此选项错误;
    B、若甲、乙两组数据的方差分别为S甲2=0.3,S乙2=0.1,则乙组数据比甲组数据稳定,此选项错误;
    C、一组数据2,4,5,5,3,6的众数是5,此选项正确;
    D、一组数据2,4,5,5,3,6的平均数是,此选项错误;
    故选:C.
    【点睛】
    本题考查了必然事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    3、C
    【解析】
    直接利用反比例函数的性质结合图象分布得出答案.
    【详解】
    对于函数y=,y是x2的反比例函数,故选项A错误;
    它的图象不经过原点,故选项B错误;
    它的图象分布在第一、二象限,不经过第三象限,故选项C正确;
    第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,
    故选C.
    【点睛】
    此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.
    4、C
    【解析】
    根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.
    【详解】
    解:A、不是中心对称图形,是轴对称图形,故本选项错误;
    B、既不是中心对称图形,也不是轴对称图形,故本选项错误;
    C、既是中心对称图形又是轴对称图形,故本选项正确;
    D、不是中心对称图形,是轴对称图形,故本选项错误.
    故选C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    5、A
    【解析】
    将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.
    【详解】
    解:原方程可化为:(x﹣1)(x﹣1)=0,
    ∴x1=1,x1=1.
    故选:A.
    【点睛】
    此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
    6、C
    【解析】
    A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;
    B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;
    C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;
    D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.
    故选C.
    7、B
    【解析】
    根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.
    【详解】
    ∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,
    ∴-2+m=−,
    解得,m=-1,
    故选B.
    8、D
    【解析】
    依据,即可得到,再根据,即可得到.
    【详解】

    解:如图,,

    又,

    故选:D.
    【点睛】
    本题主要考查了平行线的性质,两直线平行,同位角相等.
    9、B
    【解析】
    分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.
    详解:因为-的相反数为
    所以-的绝对值为.
    故选:B
    点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.
    10、B
    【解析】
    试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.

    此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得DC′===1.故选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    利用P(A)=,进行计算概率.
    【详解】
    从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为.
    故答案是:.
    【点睛】
    本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.
    12、.
    【解析】
    连接OA,OB,OC,则根据正六边形内接于可知阴影部分的面积等于扇形OAB的面积,计算出扇形OAB的面积即可.
    【详解】
    解:如图所示,连接OA,OB,OC,
    ∵正六边形内接于
    ∴∠AOB=60°,四边形OABC是菱形,
    ∴AG=GC,OG=BG,∠AGO=∠BGC
    ∴△AGO≌△BGC.
    ∴△AGO的面积=△BGC的面积
    ∵弓形DE的面积=弓形AB的面积
    ∴阴影部分的面积=弓形DE的面积+△ABC的面积
    =弓形AB的面积+△AGB的面积+△BGC的面积
    =弓形AB的面积+△AGB的面积+△AGO的面积
    =扇形OAB的面积=
    =
    故答案为.

    【点睛】
    本题考查了扇形的面积计算公式,利用数形结合进行转化是解题的关键.
    13、.
    【解析】
    试题分析:画树状图为:

    共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.
    考点:列表法与树状图法.
    14、m.
    【解析】
    利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.
    【详解】
    解:易得扇形的圆心角所对的弦是直径,
    ∴扇形的半径为: m,
    ∴扇形的弧长为: =πm,
    ∴圆锥的底面半径为:π÷2π=m.
    【点睛】
    本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.
    15、6
    【解析】
    利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.
    【详解】
    解:∵四边形ABCD为正方形,且边长为3,
    ∴AC=3,
    ∵AE平分∠CAD, ∴∠CAE=∠DAE,
    ∵AD∥CE, ∴∠DAE=∠E, ∴∠CAE=∠E, ∴CE=CA=3,
    ∵FA⊥AE,
    ∴∠FAC+∠CAE=90°,∠F+∠E=90°,
    ∴∠FAC=∠F, ∴CF=AC=3,
    ∴EF=CF+CE=3+3=6
    16、90°
    【解析】
    连接OE,根据圆周角定理即可求出答案.
    【详解】
    解:连接OE,

    根据圆周角定理可知:
    ∠C=∠AOE,∠D=∠BOE,
    则∠C+∠D=(∠AOE+∠BOE)=90°,
    故答案为:90°.
    【点睛】
    本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

    三、解答题(共8题,共72分)
    17、(1)画图见解析;(2)A1(0,6);(3)弧BB1=.
    【解析】
    (1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;
    (2)根据图形得出点的坐标;
    (3)根据弧长的计算公式求出答案.
    【详解】
    解:(1)△A1B1C如图所示.

    (2)A1(0,6).
    (3)

    【点睛】
    本题考查了旋转作图和弧长的计算.
    18、(1) ;(1) ,E(1,1);(3)存在,P点坐标可以为(1+,5)或(3,5).
    【解析】
    (1)设B(x1,5),由已知条件得 ,进而得到B(2,5).又由对称轴求得b.最终得到抛物线解析式.
    (1)先求出直线BC的解析式,再设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    求得FE的值,得到S△CBF﹣m1+2m.又由S四边形CDBF=S△CBF+S△CDB,得S四边形CDBF最大值, 最终得到E点坐标.
    (3)设N点为(n,﹣n1+n+1),1<n<2.过N作NO⊥x轴于点P,得PG=n﹣1.
    又由直角三角形的判定,得△ABC为直角三角形,由△ABC∽△GNP, 得n=1+或n=1﹣(舍去),求得P点坐标.又由△ABC∽△GNP,且时,
    得n=3或n=﹣2(舍去).求得P点坐标.
    【详解】
    解:(1)设B(x1,5).由A(﹣1,5),对称轴直线x= .

    解得,x1=2.
    ∴B(2,5).
    又∵
    ∴b=.
    ∴抛物线解析式为y= ,
    (1)如图1,

    ∵B(2,5),C(5,1).
    ∴直线BC的解析式为y=﹣x+1.
    由E在直线BC上,则设E(m,=﹣m+1.),F(m,﹣m1+m+1.)
    ∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.
    由S△CBF=EF•OB,
    ∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.
    又∵S△CDB=BD•OC=×(2﹣)×1=
    ∴S四边形CDBF=S△CBF+S△CDB═﹣m1+2m+.
    化为顶点式得,S四边形CDBF=﹣(m﹣1)1+ .
    当m=1时,S四边形CDBF最大,为.
    此时,E点坐标为(1,1).
    (3)存在.
    如图1,

    由线段FG绕点G顺时针旋转一个角α(5°<α<95°),设N(n,﹣n1+n+1),1<n<2.
    过N作NO⊥x轴于点P(n,5).
    ∴NP=﹣n1+n+1,PG=n﹣1.
    又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.
    AB1=51=15.
    ∴AC1+BC1=AB1.
    ∴△ABC为直角三角形.
    当△ABC∽△GNP,且时,
    即,
    整理得,n1﹣1n﹣6=5.
    解得,n=1+ 或n=1﹣(舍去).
    此时P点坐标为(1+,5).
    当△ABC∽△GNP,且时,
    即,
    整理得,n1+n﹣11=5.
    解得,n=3或n=﹣2(舍去).
    此时P点坐标为(3,5).
    综上所述,满足题意的P点坐标可以为,(1+,5),(3,5).
    【点睛】
    本题考查求抛物线,三角形的性质和面积的求法,直角三角形的判定,以及三角形相似的性质,属于较难题.
    19、(1);(2)
    【解析】
    (1)连接OC,根据切线的性质得到OC⊥DE,可以证明AD∥OC,根据平行线的性质可得,则根据等腰三角形的性质可得,利用,化简计算即可得到答案;
    (2)连接CF,根据,可得,利用中垂线和等腰三角形的性质可证四边形是平行四边形,得到△AOF为等边三角形,由并可得四边形是菱形,可证是等边三角形,有∠FAO=60°,再根据弧长公式计算即可.
    【详解】
    解:(1)如图示,连结,
    ∵是的切线,∴.
    又,∴,
    ∴,
    ∴.
    ∵,
    ∴.∴.
    ∵,
    ∴.
    ∴,即.

    (2)如图示,连结,
    ∵,,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴四边形是平行四边形,
    ∵,
    ∴四边形是菱形,
    ∴,
    ∴是等边三角形,
    ∴,
    ∴,
    ∵,
    ∴的长.
    【点睛】
    本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.
    20、(1)m=2;y=x+;(2)P点坐标是(﹣,).
    【解析】
    (1)利用待定系数法求一次函数和反比例函数的解析式;
    (2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标.
    【详解】
    解:(1)∵反比例函数的图象过点

    ∵点B(﹣1,m)也在该反比例函数的图象上,
    ∴﹣1•m=﹣2,
    ∴m=2;
    设一次函数的解析式为y=kx+b,
    由y=kx+b的图象过点A,B(﹣1,2),则
    解得:
    ∴一次函数的解析式为
    (2)连接PC、PD,如图,设
    ∵△PCA和△PDB面积相等,

    解得:
    ∴P点坐标是

    【点睛】
    本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.
    21、(1)证明见解析;(2)2.
    【解析】
    (1)作辅助线,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;
    (2)证明△ODF∽△AEF,列比例式可得结论.
    【详解】
    (1)证明:连接OD,AD,
    ∵AB是⊙O的直径,
    ∴AD⊥BC,
    ∵AB=AC,
    ∴BD=CD,
    ∵OA=OB,
    ∴OD∥AC,
    ∵EF⊥AC,
    ∴OD⊥EF,
    ∴EF是⊙O的切线;

    (2)解:∵OD∥AE,
    ∴△ODF∽△AEF,
    ∴,
    ∵AB=4,AE=1,
    ∴,
    ∴BF=2.
    【点睛】
    本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键.
    22、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.
    【解析】
    (1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;
    (2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.
    【详解】
    (1)利用表格得出函数关系是一次函数关系:
    设y1=kx+b,

    解得:
    ∴y1=20x+540,
    利用图象得出函数关系是一次函数关系:
    设y2=ax+c,

    解得:
    ∴y2=10x+1.
    (2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),
    =(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,
    =﹣2( x﹣4)2+450,(1≤x≤9,且x取整数)
    ∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
    去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)
    =(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),
    =( x﹣29)2,(10≤x≤12,且x取整数),
    ∵10≤x≤12时,∴当x=10时,w最大=361(万元),
    ∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.
    【点睛】
    此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.
    23、(1)见解析;(2).
    【解析】
    (1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,从而即可证明;
    (2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解.
    【详解】
    证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,
    ∴∠APC+∠BPD=45°,
    又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,
    ∴∠PAB=∠PBD,∠BPD=∠PAC,
    ∵∠PCA=∠PDB,
    ∴△PAC∽△BPD;
    (2)∵,PC=PD,AC=3,BD=1
    ∴PC=PD=,
    ∴CD=.
    【点睛】
    本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法.
    24、(1)y=x2+3x;(2)当PO+PC的值最小时,点P的坐标为(2,);(3)存在,具体见解析.
    【解析】
    (1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
    (2)D与P重合时有最小值,求出点D的坐标即可;
    (3)存在,分别根据①AC为对角线,②AC为边,两种情况,分别求解即可.
    【详解】
    (1)在矩形OABC中,OA=4,OC=3,
    ∴A(4,0),C(0,3),
    ∵抛物线经过O、A两点,且顶点在BC边上,
    ∴抛物线顶点坐标为(2,3),
    ∴可设抛物线解析式为y=a(x﹣2)2+3,
    把A点坐标代入可得0=a(4﹣2)2+3,解得a=,
    ∴抛物线解析式为y=(x﹣2)2+3,即y=x2+3x;
    (2)∵点P在抛物线对称轴上,∴PA=PO,∴PO+PC= PA+PC.
    ∴当点P与点D重合时,PA+PC= AC;当点P不与点D重合时,PA+PC> AC;
    ∴当点P与点D重合时,PO+PC的值最小,
    设直线AC的解析式为y=kx+b,
    根据题意,得解得
    ∴直线AC的解析式为,
    当x=2时,,
    ∴当PO+PC的值最小时,点P的坐标为(2,);
    (3)存在.

    ①AC为对角线,当四边形AQCP为平行四边形,点Q为抛物线的顶点,即Q(2,3),则P(2,0);
    ②AC为边,当四边形AQPC为平行四边形,点C向右平移2个单位得到P,则点A向右平移2个单位得到点Q,则Q点的横坐标为6,当x=6时,,此时Q(6,−9),则点A(4,0)向右平移2个单位,向下平移9个单位得到点Q,所以点C(0,3)向右平移2个单位,向下平移9个单位得到点P,则P(2,−6);
    当四边形APQC为平行四边形,点A向左平移2个单位得到P,则点C向左平移2个单位得到点Q,则Q点的横坐标为−2,当x=−2时,,此时Q(−2,−9),则点C(0,3)向左平移2个单位,向下平移12个单位得到点Q,所以点A(4,0)向左平移2个单位,向下平移12个单位得到点P,则P(2,−12);
    综上所述,P(2,0),Q(2,3)或P(2,−6),Q(6,−9)或P(2,−12),Q(−2,−9).
    【点睛】
    二次函数的综合应用,涉及矩形的性质、待定系数法、平行四边形的性质、方程思想及分类讨论思想等知识.

    相关试卷

    2020年江苏省扬州市中考数学试卷(含解析版): 这是一份2020年江苏省扬州市中考数学试卷(含解析版),共34页。

    2019江苏省扬州市中考数学试卷(Word版-含解析): 这是一份2019江苏省扬州市中考数学试卷(Word版-含解析),共7页。试卷主要包含了下列图案中,是中心对称图形的是,下列个数中,小于-2的数是,分式可变形为,如图所示物体的左视图是,因式分解等内容,欢迎下载使用。

    2023年江苏省扬州市中考数学试卷(含解析): 这是一份2023年江苏省扬州市中考数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map