2022年江西省南昌市新建区重点达标名校中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.|﹣3|=( )
A. B.﹣ C.3 D.﹣3
2.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是( )
A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D.
3.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程( )
A. B.
C. D.
4.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为( )
A.8 B.10 C.12 D.14
5.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )
A.1种 B.2种 C.3种 D.4种
6.如图,在中,、分别为、边上的点,,与相交于点,则下列结论一定正确的是( )
A. B.
C. D.
7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).
A.12 B.10 C.8 D.6
8.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A.角的内部到角的两边的距离相等的点在角的平分线上
B.角平分线上的点到这个角两边的距离相等
C.三角形三条角平分线的交点到三条边的距离相等
D.以上均不正确
9.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()
A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1
10.下列等式正确的是( )
A.(a+b)2=a2+b2 B.3n+3n+3n=3n+1
C.a3+a3=a6 D.(ab)2=a
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_____
12.若 m、n 是方程 x2+2018x﹣1=0 的两个根,则 m2n+mn2﹣mn=_________.
13.如图,如果四边形ABCD中,AD=BC=6,点E、F、G分别是AB、BD、AC的中点,那么△EGF面积的最大值为_____.
14.半径是6cm的圆内接正三角形的边长是_____cm.
15.若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的侧面面积为______cm(结果保留π).
16.不等式组的解集是____________;
三、解答题(共8题,共72分)
17.(8分)观察下列等式:
22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
…第④个等式为 ;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.
18.(8分)(1)解方程:x2﹣4x﹣3=0;
(2)解不等式组:
19.(8分)直线y1=kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)根据图象写出不等式kx+b﹣≤0的解集;
(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
20.(8分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.
(1)求四边形OEBF的面积;
(2)求证:OG•BD=EF2;
(3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.
21.(8分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E
(Ⅰ)如图①,求∠CED的大小;
(Ⅱ)如图②,当DE=BE时,求∠C的大小.
22.(10分)先化简,再求值:,其中.
23.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2﹣2ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是﹣1.
(1)求k,a,b的值;
(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,△PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,当PB∥CD时,点Q是直线AB上一点,若∠BPQ+∠CBO=180°,求Q点坐标.
24.如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,
(1)求点A的坐标;
(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据绝对值的定义解答即可.
【详解】
|-3|=3
故选:C
【点睛】
本题考查的是绝对值,理解绝对值的定义是关键.
2、C
【解析】
结合图形,逐项进行分析即可.
【详解】
在△ADC和△BAC中,∠ADC=∠BAC,
如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;
②,
故选C.
【点睛】
本题考查了相似三角形的条件,熟练掌握相似三角形的判定方法是解题的关键.
3、A
【解析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.
【详解】
设有x辆车,则可列方程:
3(x-2)=2x+1.
故选:A.
【点睛】
此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.
4、B
【解析】
试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.
故选B.
点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.
5、B
【解析】
首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.
【详解】
解:设毽子能买x个,跳绳能买y根,根据题意可得:
3x+5y=35,
y=7-x,
∵x、y都是正整数,
∴x=5时,y=4;
x=10时,y=1;
∴购买方案有2种.
故选B.
【点睛】
本题主要考查二元一次方程的应用,关键在于根据题意列方程.
6、A
【解析】
根据平行线分线段成比例定理逐项分析即可.
【详解】
A.∵,
∴,,
∴,故A正确;
B. ∵,
∴,故B不正确;
C. ∵,
∴ ,故C不正确;
D. ∵,
∴,故D不正确;
故选A.
【点睛】
本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
7、B
【解析】
利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.
【详解】
解:360°÷36°=10,所以这个正多边形是正十边形.
故选:B.
【点睛】
本题主要考查了多边形的外角和定理.是需要识记的内容.
8、A
【解析】
过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB
【详解】
如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,
∵两把完全相同的长方形直尺,
∴CE=CF,
∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),
故选A.
【点睛】
本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.
9、B
【解析】
∵观察可知:左边三角形的数字规律为:1,2,…,n,
右边三角形的数字规律为:2,,…,,
下边三角形的数字规律为:1+2,,…,,
∴最后一个三角形中y与n之间的关系式是y=2n+n.
故选B.
【点睛】
考点:规律型:数字的变化类.
10、B
【解析】
(1)根据完全平方公式进行解答;
(2)根据合并同类项进行解答;
(3)根据合并同类项进行解答;
(4)根据幂的乘方进行解答.
【详解】
解:A、(a+b)2=a2+2ab+b2,故此选项错误;
B、3n+3n+3n=3n+1,正确;
C、a3+a3=2a3,故此选项错误;
D、(ab)2=a2b,故此选项错误;
故选B.
【点睛】
本题考查整数指数幂和整式的运算,解题关键是掌握各自性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(672,2019)
【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.
详解:
解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位,
∵2018÷3=672…2,
∴走完第2018步,为第673个循环组的第2步,
所处位置的横坐标为672,
纵坐标为672×3+3=2019,
∴棋子所处位置的坐标是(672,2019).
故答案为:(672,2019).
点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.
12、1
【解析】
根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m2n+mm2﹣mn分解因式得到 mn(m+n﹣1),然后利用整体代入的方法计算.
【详解】
解:∵m、n 是方程 x2+2018x﹣1=0 的两个根,
则原式=mn(m+n﹣1)
=﹣1×(﹣2018﹣1)
=﹣1×(﹣1)
=1,
故答案为:1.
【点睛】
本题考查了根与系数的关系,如果一元二次方程 ax2+bx+c=0 的两根分别
为与,则解题时要注意这两个关 系的合理应用.
13、4.1.
【解析】
取CD的值中点M,连接GM,FM.首先证明四边形EFMG是菱形,推出当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论.
【详解】
解:取CD的值中点M,连接GM,FM.
∵AG=CG,AE=EB,
∴GE是△ABC的中位线
∴EG=BC,
同理可证:FM=BC,EF=GM=AD,
∵AD=BC=6,
∴EG=EF=FM=MG=3,
∴四边形EFMG是菱形,
∴当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,
∴△EGF的面积的最大值为S四边形EFMG=4.1,
故答案为4.1.
【点睛】
本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键.
14、6
【解析】
根据题意画出图形,作出辅助线,利用垂径定理及等边三角形的性质解答即可.
【详解】
如图所示,OB=OA=6,
∵△ABC是正三角形,
由于正三角形的中心就是圆的圆心,
且正三角形三线合一,
所以BO是∠ABC的平分线;
∠OBD=60°×=30°,
BD=cos30°×6=6×=3;
根据垂径定理,BC=2×BD=6,
故答案为6.
【点睛】
本题主要考查了正多边形和圆,正三角形的性质,熟练掌握等边三角形的性质是解题的关键,根据圆的内接正三角形的特点,求出内心到每个顶点的距离,可求出内接正三角形的边长.
15、12π
【解析】
根据圆锥的侧面展开图是扇形可得,
,∴该圆锥的侧面面积为:12π,
故答案为12π.
16、﹣9<x≤﹣1
【解析】
分别求出两个不等式的解集,再求其公共解集.
【详解】
,
解不等式①,得:x≤-1,
解不等式②,得:x>-9,
所以不等式组的解集为:-9<x≤-1,
故答案为:-9<x≤-1.
【点睛】
本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
三、解答题(共8题,共72分)
17、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.
【解析】
(1)根据①②③的规律即可得出第④个等式;
(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.
【详解】
(1)∵22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
∴第④个等式为52﹣2×4=42+1,
故答案为:52﹣2×4=42+1,
(2)第n个等式为(n+1)2﹣2n=n2+1.
(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.
【点睛】
本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.
18、(1),;(2)1≤x<1.
【解析】
试题分析:利用配方法进行解方程;首先分别求出两个不等式的解,然后得出不等式组的解.
试题解析:(1)-1x=3-1x+1=7=7 x-2=±
解得:,
(2)解不等式1,得x≥1 解不等式2,得x<1 ∴不等式组的解集是1≤x<1
考点:一元二次方程的解法;不等式组.
19、 (1) y=﹣x+6;(2) 0<x<2或x>4;(3) 点P的坐标为(2,0)或(﹣3,0).
【解析】
(1)将点坐标代入双曲线中即可求出,最后将点坐标代入直线解析式中即可得出结论;
(2)根据点坐标和图象即可得出结论;
(3)先求出点坐标,进而求出,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.
【详解】
解:(1)∵点和点在反比例函数的图象上,
,
解得,
即
把两点代入中得 ,
解得:,
所以直线的解析式为:;
(2)由图象可得,当时,的解集为或.
(3)由(1)得直线的解析式为,
当时,y=6,
,
,
当时,,
∴点坐标为
.
设P点坐标为,由题可以,点在点左侧,则
由可得
①当时,,
,解得,
故点P坐标为
②当时,,
,解得,
即点P的坐标为
因此,点P的坐标为或时,与相似.
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.
20、(1);(2)详见解析;(3)AE=.
【解析】
(1)由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF(ASA),则可证得S四边形OEBF=S△BOC=S正方形ABCD;
(2)易证得△OEG∽△OBE,然后由相似三角形的对应边成比例,证得OG•OB=OE2,再利用OB与BD的关系,OE与EF的关系,即可证得结论;
(3)首先设AE=x,则BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF的面积之和,然后利用二次函数的最值问题,求得AE的长.
【详解】
(1)∵四边形ABCD是正方形,
∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
∴∠BOF+∠COF=90°,
∵∠EOF=90°,
∴∠BOF+∠COE=90°,
∴∠BOE=∠COF,
在△BOE和△COF中,
∴△BOE≌△COF(ASA),
∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD
(2)证明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,
∴△OEG∽△OBE,
∴OE:OB=OG:OE,
∴OG•OB=OE2,
∵
∴OG•BD=EF2;
(3)如图,过点O作OH⊥BC,
∵BC=1,
∴
设AE=x,则BE=CF=1﹣x,BF=x,
∴S△BEF+S△COF=BE•BF+CF•OH
∵
∴当时,S△BEF+S△COF最大;
即在旋转过程中,当△BEF与△COF的面积之和最大时,
【点睛】
本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题.注意掌握转化思想的应用是解此题的关键.
21、(Ⅰ)68°(Ⅱ)56°
【解析】
(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.
【详解】
(Ⅰ)∵四边形ABED 圆内接四边形,
∴∠A+∠DEB=180°,
∵∠CED+∠DEB=180°,
∴∠CED=∠A,
∵∠A=68°,
∴∠CED=68°.
(Ⅱ)连接AE.
∵DE=BD,
∴,
∴∠DAE=∠EAB=∠CAB=34°,
∵AB是直径,
∴∠AEB=90°,
∴∠AEC=90°,
∴∠C=90°﹣∠DAE=90°﹣34°=56°
【点睛】
本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.
22、-1, -9.
【解析】
先去括号,再合并同类项;最后把x=-2代入即可.
【详解】
原式=,
当x=-2时,原式=-8-1=-9.
【点睛】
本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.
23、(1)k=1、a=2、b=4;(2)s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;(3)Q(﹣,)
【解析】
(1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b
(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,设出P点坐标,可求出N点坐标,即可以用t表示S.
(3)由PB∥CD,可求P点坐标,连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,根据P的坐标,可得∠POA=45°,由OA=OC可得∠CAO=45°则PO⊥AB,根据抛物线的对称性可知R在对称轴上.设Q点坐标,根据△BOR∽△PQS,可求Q点坐标.
【详解】
(1)∵OA=4
∴A(﹣4,0)
∴﹣16+8a=0
∴a=2,
∴y=﹣x2﹣4x,当x=﹣1时,y=﹣1+4=3,
∴B(﹣1,3),
将A(﹣4,0)B(﹣1,3)代入函数解析式,得,
解得,
直线AB的解析式为y=x+4,
∴k=1、a=2、b=4;
(2)过P点作PN⊥OA于N,交AB于M,过B点作BH⊥PN,如图1,
由(1)知直线AB是y=x+4,抛物线是y=﹣x2﹣4x,
∴当x=t时,yP=﹣t2﹣4t,yN=t+4
PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,
BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,
S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,
化简,得s=﹣t2﹣ t﹣6,自变量t的取值范围是﹣4<t<﹣1;
∴﹣4<t<﹣1
(3)y=﹣x2﹣4x,当x=﹣2时,y=4即D(﹣2,4),当x=0时,y=x+4=4,即C(0,4),
∴CD∥OA
∵B(﹣1,3).
当y=3时,x=﹣3,
∴P(﹣3,3),
连接OP,交AC于点R,过P点作PN⊥OA于M,交AB于N,过D点作DT⊥OA于T,如图2,
可证R在DT上
∴PN=ON=3
∴∠PON=∠OPN=45°
∴∠BPR=∠PON=45°,
∵OA=OC,∠AOC=90°
∴∠PBR=∠BAO=45°,
∴PO⊥AC
∵∠BPQ+∠CBO=180,
∴∠BPQ=∠BCO+∠BOC
过点Q作QS⊥PN,垂足是S,
∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,
可求BR=,OR=2,
设Q点的横坐标是m,
当x=m时y=m+4,
∴SQ=m+3,PS=﹣m﹣1
∴,解得m=﹣.
当x=﹣时,y=,
Q(﹣,).
【点睛】
本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.
24、(1)A(4,3);(2)28.
【解析】
(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得△OBC的面积.
【详解】
解:(1)由题意得: ,解得,
∴点A的坐标为(4,3).
(2)过点A作x轴的垂线,垂足为D,
在Rt△OAD中,由勾股定理得,
∴.
∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,
∴,解得a=8.
∴.
江西省重点名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份江西省重点名校2021-2022学年中考数学模拟预测试卷含解析,共20页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
2022年上海市静安区、青浦区重点达标名校中考数学模拟预测试卷含解析: 这是一份2022年上海市静安区、青浦区重点达标名校中考数学模拟预测试卷含解析,共18页。试卷主要包含了﹣的绝对值是等内容,欢迎下载使用。
2022届江西省安远县重点达标名校中考数学模拟预测题含解析: 这是一份2022届江西省安远县重点达标名校中考数学模拟预测题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,小手盖住的点的坐标可能为等内容,欢迎下载使用。