2017-2018学年1月广东省普通高中数学学业水平考试真题(一) Word版含解析
展开2017年1月广东省普通高中学业水平考试真题卷
(时间:90分钟 满分:100分)
一、选择题(本大题共15小题,每小题4分,共60分.每小题中只有一个选项是符合题意的,不选、多选、错选均不得分)
1.已知集合M={0,2,4},N={1,2,3},P={0,3},则(M∪N)∩P等于( )
A.{0,1,2,3,4} B.{0,3} C.{0,4} D.{0}
解析:M∪N={0,1,2,3,4},(M∪N)∩P={0,3},故选B.
答案:B
2.函数y=lg(x+1)的定义域是( )
A.(-∞,+∞) B.(0,+∞)
C.(-1,+∞) D.-1,+∞)
解析:对数函数要求真数大于0,所以x+1>0,解得x>-1,故选C.
答案:C
3.设i为虚数单位,则复数等于( )
A.1+i B.1-i C.-1+i D.-1-i
解析:====
-1-i,故选D.
答案:D
4.已知甲:球的半径为1 cm;乙:球的体积为 cm3,则甲是乙的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:充分性:若r=1 cm,由V=πr3可得体积为π cm3,同样利用此公式可证必要性也成立.
答案:C
5.已知直线l过点A(1,2),且与直线y=x+1垂直,则直线l的方程是( )
A.y=2x B.y=-2x+4 C.y=x+ D.y=x+
解析:因为两直线垂直时,斜率互为倒数的相反数(k1k2=-1),所以直线l的斜率k=-2,由点斜式方程y-y0=k(x-x0)可得,y-2=-2(x-1),整理得y=-2x+4,故选B.
答案:B
6.顶点在坐标原点,准线为x=-2的抛物线的标准方程是( )
A.y2=8x B.y2=-8x C.x2=8y D.x2=-8y
解析:因为准线方程为x=-2,所以焦点在x轴上,且-=-2,所以p=4,由y2=2px得y2=8x.
答案:A
7.已知三点A(-3,3), B(0, 1),C(1,0),则|+|等于( )
A.5 B.4 C.+ D.-
解析:因为=(3,-2),=(1,-1),所以+=(4,-3),
所以|+|==5,故选A.
答案:A
8.已知角α的顶点为坐标原点,始边为x轴的正半轴,终边过点P(,-2),则下列等式不正确的是( )
A.sin α=- B.sin(α+π)= C.cos α= D.tan α=-
解析:依题意得,r===3,sin α=,cos α=,tan α=,
所以sin α=,cos α=,tan α==-,所以A,B,C正确,D错误.
答案:D
9.下列等式恒成立的是( )
A.=x-(x≠0) B.(3x)2=3x2
C.log3(x2+1)+log32=log3(x2+3) D.log3=-x
解析:=x-(x≠0),故A错;(3x)2=32x,故B错;
log3(x2+1)+log32=log32(x2+1),故C错.
答案:D
10.已知数列{an}满足a1=1,且an+1-an=2,则{an}的前n项和Sn等于( )
A.n2+1 B.n2 C.2n-1 D.2n-1
解析:数列{an}是以1为首项,2为公差的等差数列,由Sn=na1+d=n+·2=n2,故选B.
答案:B
11.已知实数x,y满足则z=2x+y的最大值为( )
A.3 B.5 C.9 D.10
解析:如图,画出可行域,当y=-2x+z移动到A点时,直线与y轴的截距z取得最大值,因为A(3,3),所以z=2x+y的最大值为9.
答案:C
12.已知点A(-1,8)和B(5, 2),则以线段AB为直径的圆的标准方程是( )
A.(x+2)2+(y+5)2=3 B.(x+2)2+(y+5)2=18
C.(x-2)2+(y-5)2=3 D.(x-2)2+(y-5)2=18
解析:圆的标准方程(x-a)2+(y-b)2=r2,圆心为C=(2,5),半径r==3,所以圆的标准方程为(x-2)2+(y-5)2=18.
答案:D
13.下列不等式一定成立的是( )
A.x+≥2(x≠0) B.x2+≥1(x∈R)
C.x2+1≤2x(x∈R) D.x2+5x+6≥0(x∈R)
解析:A选项中,当x<0时,显然不成立;C选项中,当x=-1时,显然不成立;D选项中,当x∈(-3,-2)时,x2+5x+6<0,所以不成立;B选项中,x2+=(x2+1)+-1≥2-1=1(x∈R),当且仅当x=0时取“=”.
答案:B
14.已知f(x)是定义在R上的偶函数,且当x∈(-∞,0]时,f(x)=x2-sin x,则当x∈0,+∞)时,f(x)=( )
A.x2+sin x B.-x2-sin x C.x2-sin x D.-x2+sin x
解析:设x∈0,+∞),则-x∈(-∞,0],所以f(-x)=(-x)2-sin(-x)=x2+sin x,又f(x)是定义在R上的偶函数,所以f(x)=f(-x)=x2+sin x,故选A.
答案:A
15.已知样本x1,x2,x3,x4,x5的平均数为4, 方差为3,则x1+6,x2+6,x3+6,x4+6,x5+6的平均数和方差分别为( )
A.4和3 B.4和9 C.10和3 D.10和9
解析:由平均数的定义可知x1+6,x2+6,x3+6,x4+6,x5+6的平均数=+6=10,方差不变.
答案:C
二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)
16.已知x>0,且,x,15成等比数列,则x=____________.
解析:因为, x,15成等比数列,所以x2=×15=25,又x>0,所以x=5.
答案:5
17.函数f(x)=sin xcos(x+1)+sin(x+1)cos x的最小正周期是____________.
解析:f(x)=sin xcos(x+1)+sin(x+1)cos x=sinx+(x+1)]=sin(2x+1),
所以最小正周期T==π.
答案:π
18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是____________.
解析:从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数一共有如下12个基本事件:12,13,14,21,23,24,31,32,34,41,42,43;其中该两位数小于20的共有12,13,14三个,所以该两位数小于20的概率为=.
答案:
19.中心在坐标原点的椭圆,其离心率为,两个焦点F1和F2在x轴上,P为该椭圆上的任意一点,若|PF1|+|PF2|=4,则椭圆的标准方程是________.
解析:根据焦点在x轴上可以设椭圆的标准方程为+=1(a>b>0),
因为长轴长2a=|PF1|+|PF2|=4,离心率e==,
所以a=2,c=1,b==,所以椭圆的标准方程为+=1.
答案:+=1
三、解答题(本大题共2小题,共24分.解答时应写出必要的文字说明、证明过程及演算步骤)
20.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且=.
(1)证明:△ABC为等腰三角形;
(2)若a=2,c=3,求sin C的值.
(1)证明:因为=,
所以acos B=bcos A,
由正弦定理知sin Acos B=sin Bcos A,
所以tan A=tan B,
又A,B∈(0,π),
所以A=B,
所以△ABC为等腰三角形.
(2)解:由(1)可知A=B,所以a=b=2,
根据余弦定理有:c2=a2+b2-2abcos C,
所以9=4+4-8cos C,解得cos C=-,
因为C∈(0,π),
所以sin C>0,
所以sin C==.
21.(12分)如图,在四棱锥PABCD中,PA⊥AB,PA⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC=2,E为PC的中点.
(1) 证明:AP⊥CD;
(2) 求三棱锥PABC的体积;
(3) 证明:AE⊥平面PCD.
(1)证明:因为PA⊥AB,PA⊥AD,AB⊂平面ABCD,AD⊂平面ABCD,AB∩AD=A,
所以PA⊥平面ABCD,又CD⊂平面ABCD,
所以AP⊥CD.
(2)解:由(1)可知AP⊥平面ABC,所以VP-ABC=S△ABC·AP,
又S△ABC=AB·BC·sin ∠ABC=×2×2×sin 60°=,
所以VP-ABC=××2=.
(3)证明:因为CD⊥AP,CD⊥AC,AP⊂平面APC,AC⊂平面APC,AP∩AC=A,
所以CD⊥平面APC,
又AE⊂平面APC,
所以CD⊥AE,
由AB=BC=2且∠ABC=60°得△ABC为等边三角形,且AC=2,
又因为AP=2,且E为PC的中点,
所以AE⊥PC,
又AE⊥CD,PC⊂平面PCD,CD⊂平面PCD,PC∩CD=C,
所以AE⊥平面PCD.
广东省普通高中2021年高中数学学业水平考试模拟测试题一含解析: 这是一份广东省普通高中2021年高中数学学业水平考试模拟测试题一含解析,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省普通高中2021年高中数学学业水平考试模拟测试题三含解析: 这是一份广东省普通高中2021年高中数学学业水平考试模拟测试题三含解析,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省普通高中2021年高中数学学业水平考试模拟测试题四含解析: 这是一份广东省普通高中2021年高中数学学业水平考试模拟测试题四含解析,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。