![华师大版初中数学八年级上册第十五章《数据的收集与表示》单元测试卷(困难)(含答案解析)01](http://www.enxinlong.com/img-preview/2/3/13384805/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![华师大版初中数学八年级上册第十五章《数据的收集与表示》单元测试卷(困难)(含答案解析)02](http://www.enxinlong.com/img-preview/2/3/13384805/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![华师大版初中数学八年级上册第十五章《数据的收集与表示》单元测试卷(困难)(含答案解析)03](http://www.enxinlong.com/img-preview/2/3/13384805/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学华师大版八年级上册第15章 数据的收集与表示综合与测试单元测试练习题
展开华师大版初中数学八年级上册第十五章《数据的收集与表示》单元测试卷
考试范围:第十五章;考试时间:120分钟;总分120分
学校:___________姓名:___________班级:___________考号:___________
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)
一、选择题(本大题共12小题,共36.0分)
1. 对甲、乙两户家庭全年各项支出的统计如图所示,已知甲户居民的衣着支出与乙户相同,下面根据统计,对两户家庭教育支出的费用做出判断,正确的是( )
A. 甲比乙大 B. 乙比甲大 C. 甲、乙一样大 D. 无法确定
2. 如图,是根据某市2014年至2018年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中判断错误的是( )
A. 2014年至2018年工业生产总值逐年增加
B. 2018年的工业生产总值比前一年增加了40亿元
C. 2016年与2017年每一年与前一年比,其增长额相同
D. 2015年至2018年,每一年与前一年比,2018年的增长率最大
3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到扇形统计图如图所示:
则下面结论中不正确的是( )
A. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
B. 新农村建设后,其他收入增加了一倍以上
C. 新农村建设后,养殖收入增加了一倍
D. 新农村建设后,种植收入减少
4. 北京市体育中考现场考试共有三个项目,分为耐力、素质和球类三项,其中耐力为男子1000米跑,女子800米跑.所有同学都要参加,此外,参加考试的同学需在素质和球类项目中分别选择一项参加考试.
选项规则如表1所示:
表1:北京市体育中考现场考试选项规则
项目
耐力(必选)
素质(任选一项)
球类(任选一项)
男生
1000米跑
引体向上、实心球
篮球绕杆、排球垫球、足球绕杆
女生
800米跑
仰卧起坐、实心球
篮球绕杆、排球垫球、足球绕杆
小宇对初三4班40名同学的体育选项情况进行了统计,并根据其中部分信息给制了表2
表2:初三4班体育中考选项情况统计表
项目
素质
球类
仰卧起坐
引体向上
实心球
篮球绕杆
排球垫球
足球绕杆
男生
20
2
女生
16
总计
17
15
16
2
以下有四个推断
①一定有女生选择了实心球
②一定有男生同时选择引体向上和足球绕杆
③至少有一名女生同时选择仰卧起坐和篮球绕杆
④男生中同时选择实心球和篮球绕杆的至多有5人
所有合理推断的序号是( )
A. ①② B. ①③ C. ②④ D. ③④
5. 如图所示为我国2009~2012年财政收入增长率的折线统计图,其中2010年我国财政收入约为83100亿元.给出下列说法:①2009年我国财政收入约为83100(1−21.3%)亿元;②这4年中,我国年财政收入先增后减;③这4年中,2009年我国财政收入最少;④这4年中,2011年我国财政收入最多;⑤2012年我国财政收入约为83100(1+24.8%)(1+12.8%)亿元.其中正确的个数是( )
A. 0个 B. 1个 C. 2个 D. 3个
6. 某水库水位发生变化的主要原因是降雨的影响,对这个水库5月份到10月份的水位进行统计得到折线统计图如图所示,则该地区降雨最多的时期为( )
A. 5~6月份 B. 7~8月份 C. 8~9月份 D. 9~10月份
7. 某城市经济生产总值最近4年的增长情况如图所示,请判断下列说法中正确的为
A. 2013年到2016年该城市的经济生产总值不变
B. 2013年到2016年该城市的经济生产总值一直在下降
C. 2013年到2016年该城市的经济生产总值有升有降
D. 2013年到2016年该城市的经济生产总值一直在上升
8. 5G网络是第五代移动通信网络,它将推动我国数字经济发展迈上新台阶.据预测,2020年到2030年中国5G直接经济产出和间接经济产出的情况如图所示,根据图提供的信息,下列推断不合理的是( )
A. 2030年5G间接经济产出比5G直接经济产出多4.2万亿元
B. 2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长
C. 2030年5G直接经济产出约为2020年5G直接经济产出的13倍
D. 2022年到2023年与2023年到2024年5G间接经济产出的增长率相同
9. 小明把自己一周的支出情况用如图所示的统计图来表示,下面说法正确的是( )
A. 从图中可以直接看出具体消费数额
B. 从图中可以直接看出总消费数额
C. 从图中可以直接看出各项消费数额占总消费数额的百分比
D. 从图中可以直接看出各项消费数在一周中的具体变化情况
10. 某超市4月份新上架四种数量相同、款式不同的保温杯,该月这四款保温杯的销售量如表所示,则最适宜加大进货量的款式是( )
款式
甲
乙
丙
丁
销售量(个)
65
27
32
28
A. 甲 B. 乙 C. 丙 D. 丁
11. 根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是( )
A. 扇形统计图能反映各部分在总体中所占的百分比
B. 每天阅读30分钟以上的居民家庭孩子超过50%
C. 每天阅读1小时以上的居民家庭孩子占20%
D. 每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°
12. 某学校准备为七年级学生开设A,B,C,D,E,F共6门选修课,选取了若干学生进行了我最喜欢的一门选修课调查,将调查结果绘制成了如图所示的统计图表(不完整).
选修课
A
B
C
D
E
F
人数
40
60
100
下列说法不正确的是( )
A. 这次被调查的学生人数为400人 B. E对应扇形的圆心角为80°
C. 喜欢选修课F的人数为72人 D. 喜欢选修课A的人数最少
第II卷(非选择题)
二、填空题(本大题共4小题,共12.0分)
13. 为了贯彻和落实“双减政策”,某学校七年级在课后辅导中开设A硬笔书法、B篮球、C戏剧赏析三个课程.为了解七年级学生对这三个课程的选择情况,小明同学随机抽取了部分学生进行调查(规定每人必须且只能选择其中一个课程),并把调查结果绘制成如图所示的统计图,已知A:B:C三个扇形区域的圆心角之比为1:3:2,则该校七年级600名学生中,选择A课程的学生约有________名.
14. 育人中学课外活动丰富多彩,小明对本班同学参加体育锻炼的情况进行了统计,并绘制了图 ①和图 ②两个统计图,则该班参加乒乓球活动的人数为 .
15. 某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为______人.
16. 如图是记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整):根据图中信息,该足球队全年比赛胜了______场.
三、解答题(本大题共9小题,共72.0分)
17. 某市为了解八年级学生视力健康状况,在全市随机抽查了一些八年级学生2021年初的视力数据,并调取该批学生2020年初的视力数据(不完整):
青少年视力健康标准
类别
视力
健康状况
A
视力≥5.0
视力正常
B
4.9
轻度视力不良
C
4.5≤视力≤4.8
中度视力不良
D
视力≤4.5
重度视力不良
已知这次被抽查的八年级学生2021年重度视力不良的人数有128人.
根据以上信息,请解答:
(1)求这次被抽查的学生数和这些被抽查的学生2020年初视力正常(类别A)的人数.
(2)若2021年初该市有八年级学生2万人,请估计这些学生2021年初视力正常的人数比2020年初增加了多少人?
(3)国家卫健委要求,全国初中生视力不良率控制在69%以内.请估计该市八年级学生2021年初视力不良率是否符合要求?并说明理由.
18. 疫情期间,甲、乙、丙、丁4名同学约定周一至周五每天做一组俯卧撑.为了增加趣味性,他们通过游戏方式确定每个人每天的训练计划.
首先,按如图方式摆放五张卡片,正面标有不同的数字代表每天做俯卧撑的个数,反面标有x1,x2,x3,x4,x5便于记录.
具体游戏规则如下:
甲同学:同时翻开x1,x2,将两个数字进行比较,然后由小到大记录在表格中,x3,x4,x5按原顺序记录在表格中;
乙同学:同时翻开x1,x2,x3,将三个数字进行比较,然后由小到大记录在表格中,x4,x5按原顺序记录在表格中;
……
以此类推,到丁同学时,五张卡片全部翻开,并由小到大记录在表格中.
如表记录的是这四名同学五天的训练计划:
日期
记录结果
同学
星期一
星期二
星期三
星期四
星期五
甲同学
x2
x1
x3
x4
x5
乙同学
x2
x3
x1
x4
x5
丙同学
______
______
______
______
______
丁同学
x4
x5
x2
x3
x1
根据记录结果解决问题:
(1)补全表中丙同学的训练计划;
(2)已知每名同学每天至少做30个,五天最多做180个.
①如果x2=36,x3=40,那么x1所有可能取值为______;
②这四名同学星期______做俯卧撑的总个数最多,总个数最多为______个.
19. 某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:
(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);
(2)m=______,n=______;
(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?
20. 一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验.并将所得数据绘制成如图统计图表.
4月份生产的羽毛球重量统计表
组别
重量x(克)
数量(只)
A
x<5.0
m
B
5.0≤x<5.1
400
C
5.1≤x<5.2
550
D
x≥5.2
30
(1)求表中m的值及图中B组扇形的圆心角的度数.
(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?
21. 某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
(1)学校这次调查共抽取了______名学生;
(2)求抽取的学生中喜欢书法的人数,并补全条形统计图;
(3)在扇形统计图中,“围棋”所在扇形的圆心角度数为______度;
(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢足球.
22. 某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问将调查的结果分为“A非常了解”,“B比较了解”,“C基本了解”,“D不太了解”四个等级,划分等级后的数据整理成如下两幅不完整的统计图,请你根据图表信息,回答下列问题.
(1)学校这次调查共抽取了______名学生,并请补全条形统计图.
(2)求扇形统计图B选项所对应的圆心角度数.
(3)若该校有学生1800人,那么“不太了解”垃圾分类知识的学生大约有多少人?
23. 在使用电瓶车时,佩戴安全头盔可以大幅减少交通事故引发的人身伤害.为此,某区交警部门在全区范围开展了使用电瓶车佩戴安全头盔的宣传教育活动.在宣传教育活动前后分别对使用电瓶车的市民佩戴安全头盔情况进行了随机调查,把收集的数据制成统计图表,如表、如图所示.
(1)在宣传活动前的调查中,类别“每次戴”的人数占总人数的百分比为多少?若根据如表的数据绘制成扇形统计图,类别“每次戴”对应扇形的圆心角是多少度?
(2)该区约有40万人使用电瓶车,估计宣传活动前“都不戴”安全头盔的人数约有多少?
(3)小陈看了统计图表后认为,宣传活动后类别“都不戴”的人数比活动前仅增加了2人,说明宣传教育活动没有效果,你是否认同小陈的观点?为什么?
活动前佩戴安全头盔情况统计表
类别
人数
A
150
B
260
C
422
D
168
合计
1000
24. 某学校为了丰富学生课余生活,开展了“第二课堂”的活动,推出了以下四种选修课程:A.绘画;B.唱歌;C.演讲;D.十字绣.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)这次学校抽查的学生人数是____,C所占圆心角为____;
(2)将条形统计图补充完整;
(3)如果该校共有1000名学生,请你估计该校报D的学生约有多少人?
25. 在扬州市九年级学生一次学业水平测试中,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,从该市的农村、县镇、城市三类群体的学生中共抽取2000名学生的数学成绩进行统计分析,相应数据的统计图表如下:
各类学生成绩人数统计表
人数
等第
类别
A
B
C
D
农村
a
200
260
100
县镇
290
110
140
c
城市
240
b
200
40
(注:等第A、B、C、D分别代表优秀、良好、合格、不合格)
(1)补全表格中缺少的数据:a=______;b=______;c=______;
(2)若该市九年级共有60000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.
答案和解析
1.【答案】B
【解析】解;由条形统计图,得
衣着支出为1200元,教育支出为1200元.
由甲户居民的衣着支出与乙户相同,得
乙户的衣着支出为1200元,
乙户的总支出为1200÷20%=6000元,
乙户的教育支出为6000×25%=1500元,
∵1500>1200,
∴乙户的教育支出大.
故选:B.
观察条形统计图,可得衣着支出,教育支出,根据衣着支出相同,用衣着支出除以衣着所占的百分比,可得乙户的支出,根据乙户的支出乘以教育所占的百分比,可得乙户的教育支出,根据有理数的大小比较,可得答案.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
2.【答案】D
【解析】
【分析】
本题考查了折线统计图,计算增长率是解题关键,属于基础题.
根据题意结合折线统计图确定正确的选项即可.
【解答】
解:A.2014年至2018年间工业生产总值逐年增加,正确,但不符合题意;
B.2018年的工业生产总值比前一年增加了40亿元,正确,但不符合题意;
C.2016年与2017年每一年与前一年比,其增长额相同,正确,但不符合题意;
D.从2015年至2018年,每一年与前一年比,2016年的增长率最大,错误,故D符合题意;
故选:D.
3.【答案】D
【解析】[分析]
设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.
本题主要考查扇形统计图的应用,设元根据已知数据依次求出所需结果进行比对是本题解题关键.
[详解]
解:设建设前经济收入为a,建设后经济收入为2a.
A.建设后,养殖收入与第三产业收入总和为30%+28%=58%>50%,故A项正确;
B.建设后,其他收入为5%×2a=10%a,
建设前,其他收入为4%a,
故10%a÷4%a=2.5>2,故B项正确;
C.建设后,养殖收入为30%×2a=60%a,
建设前,养殖收入为30%a,
故60%a÷30%a=2,故C项正确;
D.种植收入37%×2a−60%a=14%a>0,
故建设后,种植收入增加,故D项错误.
故选D.
4.【答案】B
【解析】解:本题各个项目人数的多少,解题的关键在于球类里面.通过排球垫球,我们可以得知,女生是16人,合计是16人,因此没有男生选择排球垫球.同理,没有女生选择足球垫球.又因为每位同学均需要在球类中选择一项,对于男同学而言,因为没有选择排球垫球的,因此全部男同学都选择了篮球绕杆和足球绕杆,因此该班男生共有20+2=22人,其中选择篮球绕杆20人,足球绕杆2人.同理,因为全班共有40名同学,因此女生共有18人,其中选择排球垫球16人,因此篮球绕杆有2人.对于素质项目,因为全班共有40人,出去仰卧起坐17人,引体向上15人,还剩余8人选择实心球.又因为仰卧起坐只能女生选择,选择仰卧起坐的人数为17人,因此18名女生中,有1人选择实心球.实心球中有7名是男生,另外15名男生选择的引体向上.下面我们分析选项:
①一定有女生选择了实心球,正确,有1名女生选择.
②一定有男生同时选择引体向上和足球绕杆,无法判断,可能有.但是因为选择足球绕杆的男生只有2人,这2人完全可以选择实心球,这种情况下②就不对.
③因为女生只有1人选择实心球,而选择篮球绕杆的女生为2人,因此另外1人就既选择了篮球绕杆,又选择了仰卧起坐.选项正确.
④无法判断.不一定至多是5人,假如选择实心球的7名男生全部选择了篮球,此时同时选择实心球和篮球绕杆的就有7人.选项错误.
综上,正确选项为①③,
故选:B.
本题主要考查统计表的读取.其中①②③④每个选项都需在读懂题目,并判断出各个项目人数的前提下进行判断,因此本题的重难点在于判断各个项目的人数多少.
本题考查统计表的读取分析能力,重点在于读懂统计表后,找出各个项目人数的多少,再根据人数的多少判断①②③④各个选项是否正确,需要一定的逻辑思维,对逻辑思维有一定的锻炼.
5.【答案】C
【解析】
【分析】
此题主要考查了折线统计图,根据已知图象得出财政收入增长率先增后减,财政收入始终在增长是解题关键,根据折线图的意义得出我国年财政收入增长率先增后减,但是财政收入始终在增长,分别分析各个说法即可得出答案.
【解答】
解:①2009年我国财政收入约为:831001+21.3%亿元,故此选项错误;
②这4年中,我国年财政收入增长率先增后减,但是财政收入始终增长,故此选项错误;
③这4年中,2009年我国财政收入最少,根据我国年财政收入增长率先增后减,但是财政收入,始终在增长,故2009年财政最少;故此选项正确;
④这4年中,根据我国年财政收入增长率先增后减,但是始终在增长,故2012年财政最多;故此选项错误
⑤2012年我国财政收入约为83100(1+24.8%)(1+12.8%)亿元,此选项正确;
故正确的有2个.
故选C.
6.【答案】C
【解析】
【分析】
本题考查了折线图的意义,折线统计图表示的是事物的变化情况.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.
【解答】
从折线图中可以得出,
5~6月份该地区的水位是5~15,
7~8月份该地区的水位是18~23,
8~9月份该地区的水位是20~23,
9~10月份该地区的水位是15~20.
故选:C.
7.【答案】D
【解析】
【分析】
本题主要考查折线统计图的运用,折线统计图表示的是事物的变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.图中数据为生产总值增长率,而不是生产总值,根据折线统计图可知增长率均为正数,所以生产总值一直在增加,只是2013~2014年生产总值增长率增加,2014∼2015年生产总值的年增长率开始下降,2015∼2016年生产总值的年增长率上升.
【解答】
解:每年的增长率都是正数,说明生产总值从2013年到2016年该城市的经济生产总值一直在上升.
故选D.
8.【答案】D
【解析】解:根据折线统计图,可知
A.2030年5G间接经济产出比5G直接经济产出多10.6−6.4=4.2(万亿元),故此项正确;
B.2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长,故此项正确;
C.2030年5G直接经济产出约为2020年5G直接经济产出6.4万亿元÷0.5万亿元≈13倍,故此项正确;
D.2022年到2023年间接经济产出的增长率:(5−4)÷4=25%,2023年到2024年5G间接经济产出的增长率(6−5)÷5=20%,故此项推断不合理.
故选:D.
折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.
9.【答案】C
【解析】解:观察图可知:这是一幅扇形统计图,从图中可以直接看出各项消费数额占总消费额的百分比,
如:午餐支出占总支出的40%,车费支出占总支出的25%,文具支出占总支出的15%,其它支出占总支出的20%,
故选:C.
这是一幅扇形统计图,整个圆表示小明一周的总支出,各个扇形表示某种支出占总支出的百分之几,由此求解.
本题主要考查扇形统计图,条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.
10.【答案】A
【解析】由统计表可知,超市上架的四种数量相同、款式不同的保温杯中,甲款式销售量最多,所以最适宜加大进货量的款式是甲.
故选:A.
根据统计表可知,上架的四种数量相同、款式不同的保温杯中,甲款式销售量最多,进而可得出结论.
本题考查统计表,根据统计表中的数据可直接得出结论.
11.【答案】C
【解析】
【分析】
本题主要考查扇形统计图,扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.根据扇形统计图中的百分比的意义逐一判断即可得.
【解答】
解:
A.扇形统计图能反映各部分在总体中所占的百分比,此选项正确;
B.每天阅读30分钟以上的居民家庭孩子的百分比为1−40%=60%,超过50%,此选项正确;
C.每天阅读1小时以上的居民家庭孩子占20%+10%=30%,此选项错误;
D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是360°×(1−40%−10%−20%)=108°,此选项正确;
故选C.
12.【答案】B
【解析】
【分析】
本题考查统计表和扇形统计图,从统计图表中获取数量及数量之间的关系是解决问题的关键.
求出调查总人数,可以对A做出判断,求出F组的人数和E组所占圆心角即可对其它选项做出判断.
【解答】
解:60÷15%=400人,因此选项A正确,
C对应的人数为400×12%=48人,F对应的人数为400×18%=72人,
E对应的人数为400−40−60−100−48−72=80人,因此C、D都正确;
360°×80400=72°,因此B是错误的,
故选:B.
13.【答案】100
【解析】
【分析】
此题考查了用样本估计总体以及扇形统计图等知识点.
根据圆心角的比1:3:2算出A课程占总课程的份额,再用该校七年级600名学生乘以A课程占总课程的份额即可得出答案.
【解答】
解:根据题意得:
600×11+3+2=600×16=100(名),
故答案为100.
14.【答案】5
【解析】点拨:由题图可知,参加篮球活动的人数是20人,占总人数的40%,所以总人数为20÷40%=50(人),所以参加乒乓球活动的有50−20−10−15=5(人).
15.【答案】16000
【解析】解:该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000×22+3+3+1+1×100%=16000,
故答案为:16000
用毕业生总人数乘以“综合素质”等级为A的学生所占百分比即可求得结果.
本题考查的是条形统计图、用样本估计总体 .读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
16.【答案】30
【解析】解:10÷20%=50场,50×(1−20%−20%)=30场,
故答案为:30.
从两个统计图中可以得到“平”的有10场,占所有比赛结果的20%,从而可以求出比赛的总场次,再根据“胜”的占比,可求出“胜”的场次.
本题考查条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系式正确解答的关键.
17.【答案】解:(1)这次被抽查的学生数为:128人÷32%=400(人),
该批400名学生2020年初视力正常人数为:400−48−91−148=113(人).
(2)该市八年级学生2021年初视力正常人数为:20000×31.25%=6250(人).
这些学生2020年初视力正常的人数为:20000×113400=5650(人).
∴估计增加的人数=6250−5650=600(人).
∴该市八年级学生2021年初视力正常的人数比2020年初增加了600人.
(3)该市八年级学生2021年视力不良率=1−31.25%=68.75%.
∵68.75%<69%.
∴该市八年级学生2021年初视力不良率符合要求.
【解析】(1)利用这次被抽查的八年级学生2021年重度视力不良的人数有128人以及重度视力不良所占百分比为32%即可求出总人数;用总人数分别减去其它三类人数即可得出这些被抽查的学生2020年初视力正常(类别A)的人数;
(2)分别求出2021、2020年初视力正常的人数即可求解.
(3)用1−31.25%即可得该市八年级学生2021年视力不良率,即可判断.
本题考查扇形统计图、统计表的知识,关键在于计算的准确性.
18.【答案】x4 x2 x3 x1 x5 41,42,43 三 162
【解析】解:(1)补全表中丙同学的训练计划:x4,x2,x3,x1,x5.
故答案为x4,x2,x3,x1,x5.
(2)①由题意x4=30,
∵x4
当x5=31时,x1的最大值为43,
当x5=32时,x1的最大值为42,
当x5=33时,x1的最大值为41,
当x5=34或35时,x1的值不符合题意,
∴x1的可能取41,42,43.
故答案为41,42,43.
②观察表格可知星期三的做俯卧撑的总个数最多,
不妨设x4=30,x5=31,当x2=32时,x3+x1的最大值为180−30−31−32=87,
若x1=44,则x3=43,此时星期三的做俯卧撑的总个数为162.
当x2=33时,x3+x1的最大值为180−30−31−33=86,
若x1=44,则x3=42,此时星期三的做俯卧撑的总个数为161,
当x2=34时,x3+x1的最大值为180−30−31−34=85,
若x1=43,则x3=42,此时星期三的做俯卧撑的总个数为161,
当x2=35时,x3+x1的最大值为180−30−31−33=84,
若x1=43,则x3=41,此时星期三的做俯卧撑的总个数为160,
综上所述,星期三的做俯卧撑的总个数的最大值为162.
故答案为162.
(1)由题意同时翻开x1,x2,x3,x4将三个数字进行比较,然后由小到大记录在表格中,x5按原顺序记录在表格中即可.
(2)①由题意x4=30,x4
②观察表格可知星期三的做俯卧撑的总个数最多,不妨设x4=30,x5=31,当x2=32时,x3+x1的最大值为180−30−31−32=87,若x1=44,则x3=43,此时星期三的做俯卧撑的总个数为162.应用列举法即可解决问题.
本题考查推理与论证,统计等知识,解题的关键是理解题意,学会推理论证的方法,属于中考常考题型.
19.【答案】(1)参加这次问卷调查的学生人数为30÷20%=150(人),
航模的人数为150−(30+54+24)=42(人),
补全图形如下:
(2)36,16;
(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).
【解析】
【分析】
本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
(1)由书法小组人数及其对应百分比可得总人数,再根据各小组人数之和等于总人数求得航模人数,从而补全图形;
(2)根据百分比的概念可得m、n的值;
(3)总人数乘以样本中围棋的人数所占百分比即可.
【解答】
解:(1)见答案;
(2)m%=54150×100%=36%,n%=24150×100%=16%,
即m=36,n=16,
故答案为:36,16;
(3)见答案.
20.【答案】解:(1)550÷55%=1000(只),1000−400−550−30=20(只)
即:m=20,
360°×4001000=144°,
答:表中m的值为20,图中B组扇形的圆心角的度数为144°;
(2)4001000+5501000=9501000=95%,
12×10×(1−95%)=120×5%=6(只),
答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.
【解析】(1)图表中“C组”的频数为550只,占抽查总数的55%,可求出抽查总数,进而求出“A组”的频数,即m的值;求出“B组”所占总数的百分比,即可求出相应的圆心角的度数;
(2)计算“B组”“C组”的频率的和即为合格率,求出“不合格”所占的百分比,即可求出不合格的数量.
本题考查了统计表、扇形统计图的意义和制作方法,理解图表中的数量和数量之间的关系,是正确计算的前提.
21.【答案】100 36
【解析】解:(1)学校这次调查共抽取了:25÷25%=100名学生,
故答案为:100;
(2)喜欢书法的人数为:100×(1−30%−10%−20%−25%)=15,
补全的条形统计图如右图所示;
(3)在扇形统计图中,“围棋”所在扇形的圆心角度数为:360°×10%=36°,
故答案为:36;
(4)2000×30%=600(名),
答:该校有600名学生喜欢足球.
(1)根据爱好舞蹈的人数和所占的百分比,可以求得本次调查的人数;
(2)根据(1)中的结果和扇形统计图中的数据,可以得到抽取的学生中喜欢书法的人数,并补全条形统计图;
(3)根据扇形统计图中的数据,可以得到在扇形统计图中,“围棋”所在扇形的圆心角度数;
(4)根据统计图中的数据,可以得到该校有多少名学生喜欢足球.
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
22.【答案】200
【解析】解:(1)学校这次调查共抽取学生30÷15%=200(名),
结果为B的学生有:200−30−90−20=60(名),
补全的条形统计图如图所示,
故答案为:200;
(2)扇形统计图B选项所对应的圆心角度数为360°×60200=108°;
(3)“不太了解”垃圾分类知识的学生大约有1800×20200=180(人).
(1)根据结果为A的人数和所占的百分比,可以计算出本次调查的学生人数,然后再根据条形统计图中的数据,即可计算出结果为B的人数,从而可以将条形统计图补充完整;
(2)用360°乘以B等级人数所占比例即可;
(3)根据条形统计图中的数据,可以计算出“不太了解”垃圾分类知识的学生大约有多少人.
本题考查条形统计图、扇形统计图、用样本估计总体,利用数形结合的思想解答是解答本题的关键.
23.【答案】解:(1)在宣传活动前的调查中,类别“每次戴”的人数占总人数的百分比为1501000×100%=15%;
类别“每次戴”对应扇形的圆心角是360°×15%=54°;
(2)40×1681000×100%=6.72(万人),
答:估计该区宣传活动前“都不戴”安全头盔的人数约有6.72万人;
(3)小陈的分析不合理,
宣传活动后骑电瓶车“都不戴”安全帽所占的百分比为170883+715+232+170×100%=8.5%,
活动前“都不戴”安全帽所占的百分比为1681000×100%=16.8%,
由于8.5%<16.8%,
因此宣传教育活动有效果.
【解析】(1)用类别“每次戴”的人数除以1000即可求出类别“每次戴”的人数占总人数的百分比;再用360°乘该百分比即可得出类别“每次戴”对应扇形的圆心角度数;
(2)用该市的总人数乘以“都不戴”安全帽的人数所占的百分比即可;
(3)分别求出宣传活动前后骑电瓶车“都不戴”安全帽所占的百分比,再进行比较,即可得出小陈的分析不合理.
本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
24.【答案】解:(1)40;90°;
(2)条形统计图补充为:
;
(3)估计全校报名D的学生有1000×440=100(人),
答:该校报D的学生约有100人.
【解析】
【分析】
本题主要考查的是扇形统计图,条形统计图,用样本估计总体的有关知识.
(1)利用A项目的频数除以它所占的百分比得到调查的总人数;先求出C对应的人数,然后利用C对应的人数÷总人数×360°即可求解.
(2)计算出C项目的人数后补全条形统计图即可;
(3)用总人数乘以样本中该校报D的学生数占被调查学生数的比例即可得.
【解答】
解:(1)这次学校抽查的学生人数是12÷30%=40(人),
C项目的人数为40−12−14−4=10(人),
10÷40×360°=90°,
故答案为40;90°;
(2)见答案;
(3)见答案.
25.【答案】40 120 260
【解析】解:(1)∵农村人口=2000×30%=600,
∴农村A等第的人数a=600−200−260−100=40;
∵县镇人口=2000×40%=800,
∴县镇D等第的人数c=800−290−110−140=260;
∵城市人口=2000×30%=600,
∴城市B等第的人数b=600−240−200−40=120,
故答案为:40、120、260;
(2)抽取的学生中,成绩不合格的人数共有(100+260+40)=400,
所以成绩合格以上的人数为2000−400=1600,
估计该市成绩合格以上的人数为16002000×60000=48000.
答:估计该市成绩合格以上的人数约为48000人.
(1)根据扇形图可分别求出农村人口、县镇人口、城市人口,进而求出缺少的数据即可;
(2)利用样本来估计总体即可.
本题是一道利用统计知识解答实际问题的重点考题.主要考查利用统计图表,处理数据的能力和利用样本估计总体的思想.解答这类题目,观察图表要细致,对应的图例及其关系不能错位,计算要认真准确.
初中数学华师大版八年级上册第14章 勾股定理综合与测试单元测试同步训练题: 这是一份初中数学华师大版八年级上册第14章 勾股定理综合与测试单元测试同步训练题,共33页。试卷主要包含了0分),【答案】C,【答案】A,【答案】D,【答案】B等内容,欢迎下载使用。
初中第12章 整式的乘除综合与测试单元测试测试题: 这是一份初中第12章 整式的乘除综合与测试单元测试测试题,共19页。试卷主要包含了0分),【答案】D,【答案】B,【答案】C,【答案】A等内容,欢迎下载使用。
华师大版八年级上册第11章 数的开方综合与测试单元测试随堂练习题: 这是一份华师大版八年级上册第11章 数的开方综合与测试单元测试随堂练习题,共19页。试卷主要包含了0分),01cm)?,【答案】B,【答案】A等内容,欢迎下载使用。