|试卷下载
终身会员
搜索
    上传资料 赚现金
    2017-2021年河南中考数学真题分类汇编之二次函数
    立即下载
    加入资料篮
    2017-2021年河南中考数学真题分类汇编之二次函数01
    2017-2021年河南中考数学真题分类汇编之二次函数02
    2017-2021年河南中考数学真题分类汇编之二次函数03
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2017-2021年河南中考数学真题分类汇编之二次函数

    展开
    这是一份2017-2021年河南中考数学真题分类汇编之二次函数,共31页。试卷主要包含了,与y轴交于点C,和点B等内容,欢迎下载使用。

    2017-2021年河南中考数学真题分类汇编之二次函数
    一.选择题(共2小题)
    1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为(  )
    A.﹣2 B.﹣4 C.2 D.4
    2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是(  )

    A.﹣1<x<1 B.﹣3<x<﹣1 C.x<1 D.﹣3<x<1
    二.填空题(共1小题)
    3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b=   .
    三.解答题(共8小题)
    4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.
    (1)求抛物线的解析式及点G的坐标;
    (2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围.

    5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.
    (1)求m,n的值及抛物线的解析式;
    (2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;
    (3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.

    6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.
    (1)求m和b的值;
    (2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;
    (3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标xM的取值范围.

    7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:
    销售单价x(元)
    85
    95
    105
    115
    日销售量y(个)
    175
    125
    75
    m
    日销售利润w(元)
    875
    1875
    1875
    875
    (注:日销售利润=日销售量×(销售单价﹣成本单价))
    (1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;
    (2)根据以上信息,填空:
    该产品的成本单价是   元,当销售单价x=   元时,日销售利润w最大,最大值是   元;
    (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
    8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x﹣5经过点B,C.
    (1)求抛物线的解析式;
    (2)过点A的直线交直线BC于点M.
    ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;
    ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.

    9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x﹣2经过点A,C.
    (1)求抛物线的解析式;
    (2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.
    ①当△PCM是直角三角形时,求点P的坐标;
    ②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b的解析式.(k,b可用含m的式子表示)

    10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.
    (1)求出a,b,c的值.
    (2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.
    (3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.

    11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
    (1)求点B的坐标和抛物线的解析式;
    (2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
    ①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
    ②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.


    2017-2021年河南中考数学真题分类汇编之二次函数
    参考答案与试题解析
    一.选择题(共2小题)
    1.(2019•河南)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为(  )
    A.﹣2 B.﹣4 C.2 D.4
    【考点】二次函数图象上点的坐标特征. 版权所有
    【专题】二次函数图象及其性质.
    【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;
    【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,
    可知函数的对称轴x=1,
    ∴=1,
    ∴b=2;
    ∴y=﹣x2+2x+4,
    将点(﹣2,n)代入函数解析式,可得n=﹣4;
    故选:B.
    【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.
    2.(2017•河南)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是(  )

    A.﹣1<x<1 B.﹣3<x<﹣1 C.x<1 D.﹣3<x<1
    【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点. 版权所有
    【专题】数形结合;二次函数图象及其性质.
    【分析】根据抛物线的对称性得到抛物线与x轴的另一交点坐标,然后结合函数图象可以直接得到答案.
    【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,
    ∴抛物线与x轴的另一交点坐标是(﹣3,0),
    ∴当y>0时,x的取值范围是﹣3<x<1.
    故选:D.
    【点评】本题考查了抛物线的对称性,抛物线与x轴的交点,二次函数图象上点的坐标特征.解题时,利用了“数形结合”的数学思想.
    二.填空题(共1小题)
    3.(2018•河南)已知二次函数y=x2+bx+4顶点在x轴上,则b= ±4 .
    【考点】二次函数的性质. 版权所有
    【分析】根据二次函数顶点在x轴上得出Δ=b2﹣4ac=m2﹣4×2×2=0,即可得出答案.
    【解答】解:∵二次函数y=x2+bx+4的顶点在x轴上,
    ∴Δ=b2﹣4ac=b2﹣4×1×4=0,
    ∴b2=16,
    ∴b=±4.
    故答案为:±4.
    【点评】本题考查了二次函数的性质以及二次函数顶点在x轴上的特点,根据题意得出Δ=b2﹣4ac=0是解决问题的关键.
    三.解答题(共8小题)
    4.(2020•河南)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.
    (1)求抛物线的解析式及点G的坐标;
    (2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围.

    【考点】待定系数法求二次函数解析式;二次函数的性质;二次函数图象上点的坐标特征. 版权所有
    【专题】二次函数图象及其性质;应用意识.
    【分析】(1)先求出点B,点A坐标,利用待定系数法代入解析式求出c的值,即可求解;
    (2)先求出点M,点N坐标,利用函数的图象即可求解.
    【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴交于点B,
    ∴点B(0,c),c>0.
    ∵OA=OB=c,
    ∴点A(c,0),
    ∴0=﹣c2+2c+c,
    ∴c=3或0(舍去),
    ∴抛物线解析式为:y=﹣x2+2x+3,
    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴顶点G的坐标为(1,4);
    (2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴对称轴为直线x=1,顶点(1,4).
    ∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,
    ∴点M的横坐标为﹣2或4,点N的横坐标为6,
    ∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标为(6,﹣21),
    ∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,
    ∴当M,N在对称轴的同侧时,﹣21≤yQ≤﹣5;
    当M,N在对称轴的两侧时,﹣21≤yQ≤4.
    ∴点Q的纵坐标yQ的取值范围为﹣21≤yQ≤﹣5或﹣21≤yQ≤4.
    【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.
    5.(2017•河南)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣3与直线y=x+3交于点A(m,0)和点B(2,n),与y轴交于点C.
    (1)求m,n的值及抛物线的解析式;
    (2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;
    (3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.

    【考点】二次函数综合题. 版权所有
    【专题】开放型.
    【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程即可求解;
    (2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;
    (3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.
    【解答】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,
    ∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线方程,解得:a=1,b=2,
    ∴抛物线方程为:y=x2+2x﹣3…①,
    则C(0,﹣3);
    (2)由平移得:PN=OA=3,NM=OC=3,
    设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),
    ∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,
    ∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,
    ∴P点坐标为(3,12)或(﹣4,5),
    则线段OP的长度为:3或;
    (3)存在.
    设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)

    过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,
    则:△QAB和△Q′AB和△ABC的面积相同,
    直线QC和Q′C的方程分别为:y=x﹣3和y=x+9…②,
    将①、②联立,解得:x=﹣1或x=3或x=﹣4,
    ∴Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).
    【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
    6.(2021•河南)如图,抛物线y=x2+mx与直线y=﹣x+b相交于点A(2,0)和点B.
    (1)求m和b的值;
    (2)求点B的坐标,并结合图象写出不等式x2+mx>﹣x+b的解集;
    (3)点M是直线AB上的一个动点,将点M向左平移3个单位长度得到点N,若线段MN与抛物线只有一个公共点,直接写出点M的横坐标xM的取值范围.

    【考点】二次函数综合题. 版权所有
    【专题】代数综合题;分类讨论;一元一次不等式(组)及应用;数据分析观念.
    【分析】(1)用待定系数法即可求解;
    (2)求出点B的坐标为(﹣1,3),再观察函数图象即可求解;
    (3)分类求解确定MN的位置,进而求解.
    【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4+2m,解得:m=﹣2,
    将点A的坐标代入直线表达式得:0=﹣2+b,解得b=2;
    故m=﹣2,b=2;

    (2)由(1)得,直线和抛物线的表达式为:y=﹣x+2,y=x2﹣2x,
    联立上述两个函数表达式并解得或(不符合题意,舍去),
    即点B的坐标为(﹣1,3),
    从图象看,不等式 x2+mx>﹣x+b 的解集为x<﹣1或x>2;

    (3)当点M在线段AB上时,线段MN与抛物线只有一个公共点,
    ∵M,N的距离为3,而A、B的水平距离是3,故此时只有一个交点,即﹣1≤xM<2;
    当点M在点B的左侧时,线段MN与抛物线没有公共点;
    当点M在点A的右侧时,当 xM=3时,抛物线和MN交于抛物线的顶点(1,﹣1),即xM=3时,线段MN与抛物线只有一个公共点,
    综上所述,﹣1≤xM<2 或 xM=3.
    【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、不等式的性质等,其中(3),分类求解确定MN的位置是解题的关键.
    7.(2018•河南)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:
    销售单价x(元)
    85
    95
    105
    115
    日销售量y(个)
    175
    125
    75
    m
    日销售利润w(元)
    875
    1875
    1875
    875
    (注:日销售利润=日销售量×(销售单价﹣成本单价))
    (1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;
    (2)根据以上信息,填空:
    该产品的成本单价是 80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是 2000 元;
    (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?
    【考点】二次函数的应用;一元二次方程的应用. 版权所有
    【专题】应用题.
    【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;
    (2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;
    (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.
    【解答】解;(1)设y关于x的函数解析式为y=kx+b,
    ,得,
    即y关于x的函数解析式是y=﹣5x+600,
    当x=115时,y=﹣5×115+600=25,
    即m的值是25;
    (2)设成本为a元/个,
    当x=85时,875=175×(85﹣a),得a=80,
    w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,
    ∴当x=100时,w取得最大值,此时w=2000,
    故答案为:80,100,2000;
    (3)设科技创新后成本为b元,
    当x=90时,
    (﹣5×90+600)(90﹣b)≥3750,
    解得,b≤65,
    答:该产品的成本单价应不超过65元.
    【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.
    8.(2018•河南)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C,直线y=x﹣5经过点B,C.
    (1)求抛物线的解析式;
    (2)过点A的直线交直线BC于点M.
    ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;
    ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.

    【考点】二次函数综合题. 版权所有
    【专题】综合题.
    【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;
    (2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;
    ②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),
    AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.
    【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),
    当y=0时,x﹣5=0,解得x=5,则B(5,0),
    把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,
    ∴抛物线解析式为y=﹣x2+6x﹣5;
    (2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),
    ∵B(5,0),C(0,﹣5),
    ∴△OCB为等腰直角三角形,
    ∴∠OBC=∠OCB=45°,
    ∵AM⊥BC,
    ∴△AMB为等腰直角三角形,
    ∴AM=AB=×4=2,
    ∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,
    ∴PQ=AM=2,PQ⊥BC,
    作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,
    ∴PD=PQ=×2=4,
    设P(m,﹣m2+6m﹣5),则D(m,m﹣5),
    当P点在直线BC上方时,
    PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1(舍去),m2=4,
    当P点在直线BC下方时,
    PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,
    综上所述,P点的横坐标为4或或;
    ②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,
    ∵M1A=M1C,
    ∴∠ACM1=∠CAM1,
    ∴∠AM1B=2∠ACB,
    ∵△ANB为等腰直角三角形,
    ∴AH=BH=NH=2,
    ∴N(3,﹣2),
    易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),
    设直线EM1的解析式为y=﹣x+b,
    把E(,﹣)代入得﹣+b=﹣,解得b=﹣,
    ∴直线EM1的解析式为y=﹣x﹣,
    解方程组得,则M1(,﹣);
    在直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,

    设M2(x,x﹣5),
    ∵3=,
    ∴x=,
    ∴M2(,﹣),
    综上所述,点M的坐标为(,﹣)或(,﹣).


    【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
    9.(2019•河南)如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x﹣2经过点A,C.
    (1)求抛物线的解析式;
    (2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.
    ①当△PCM是直角三角形时,求点P的坐标;
    ②作点B关于点C的对称点B',则平面内存在直线l,使点M,B,B′到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线l:y=kx+b的解析式.(k,b可用含m的式子表示)

    【考点】二次函数综合题. 版权所有
    【专题】函数的综合应用.
    【分析】(1)利用一次函数图象上点的坐标特征可求出点A,C的坐标,根据点A,C的坐标,利用待定系数法可求出二次函数解析式;
    (2)①由PM⊥x轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑:(i)当∠MPC=90°时,PC∥x轴,利用二次函数图象上点的坐标特征可求出点P的坐标;(ii)当∠PCM=90°时,设PC与x轴交于点D,易证△AOC∽△COD,利用相似三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线PC的解析式,联立直线PC和抛物线的解析式成方程组,通过解方程组可求出点P的坐标.综上,此问得解;
    ②利用二次函数图象上点的坐标特征及一次函数图象上点的坐标特征可得出点B,M的坐标,结合点C的坐标可得出点B′的坐标,根据点M,B,B′的坐标,利用待定系数法可分别求出直线BM,B′M和BB′的解析式,利用平行线的性质可求出直线l的解析式.
    【解答】解:(1)当x=0时,y=﹣x﹣2=﹣2,
    ∴点C的坐标为(0,﹣2);
    当y=0时,﹣x﹣2=0,
    解得:x=﹣4,
    ∴点A的坐标为(﹣4,0).
    将A(﹣4,0),C(0,﹣2)代入y=ax2+x+c,得:
    ,解得:,
    ∴抛物线的解析式为y=x2+x﹣2.
    (2)①∵PM⊥x轴,
    ∴∠PMC≠90°,
    ∴分两种情况考虑,如图1所示.
    (i)当∠MPC=90°时,PC∥x轴,
    ∴点P的纵坐标为﹣2.
    当y=﹣2时,x2+x﹣2=﹣2,
    解得:x1=﹣2,x2=0,
    ∴点P的坐标为(﹣2,﹣2);
    (ii)当∠PCM=90°时,设PC与x轴交于点D.
    ∵∠OAC+∠OCA=90°,∠OCA+∠OCD=90°,
    ∴∠OAC=∠OCD.
    又∵∠AOC=∠COD=90°,
    ∴△AOC∽△COD,
    ∴=,即=,
    ∴OD=1,
    ∴点D的坐标为(1,0).
    设直线PC的解析式为y=kx+b(k≠0),
    将C(0,﹣2),D(1,0)代入y=kx+b,得:
    ,解得:,
    ∴直线PC的解析式为y=2x﹣2.
    联立直线PC和抛物线的解析式成方程组,得:,
    解得:,,
    点P的坐标为(6,10).
    综上所述:当△PCM是直角三角形时,点P的坐标为(﹣2,﹣2)或(6,10).
    ②当y=0时,x2+x﹣2=0,
    解得:x1=﹣4,x2=2,
    ∴点B的坐标为(2,0).
    ∵点C的坐标为(0,﹣2),点B,B′关于点C对称,
    ∴点B′的坐标为(﹣2,﹣4).
    ∵点P的横坐标为m(m>0且m≠2),
    ∴点M的坐标为(m,﹣m﹣2).
    利用待定系数法可求出:直线BM的解析式为y=﹣x+,直线B′M的解析式为y=x﹣,直线BB′的解析式为y=x﹣2.
    分三种情况考虑,如图2所示:
    当直线l∥BM且过点C时,直线l的解析式为y=﹣x﹣2;
    当直线l∥B′M且过点C时,直线l的解析式为y=x﹣2;
    当直线l∥BB′且过线段CM的中点N(m,﹣m﹣2)时,直线l的解析式为y=x﹣m﹣2.
    综上所述:直线l的解析式为y=﹣x﹣2,y=x﹣2或y=x﹣m﹣2.


    【点评】本题考查了一次函数图象上点的坐标特征、待定系数法二次函数解析式、二次函数图象上点的坐标特征、待定系数法求一次函数解析式、相似三角形的判定与性质以及平行线的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)①分∠MPC=90°及∠PCM=90°两种情况求出点P的坐标;②利用待定系数法及平行线的性质,求出直线l的解析式.
    10.(2018•河南)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,3),顶点F的坐标为(1,4),对称轴交x轴于点H,直线y=x+1交x轴于点D,交y轴于点E,交抛物线的对称轴于点G.
    (1)求出a,b,c的值.
    (2)点M为抛物线对称轴上一个动点,若△DGM是以DG为腰的等腰三角形时,请求出点M的坐标.
    (3)点P为抛物线上一个动点,当点P关于直线y=x+1的对称点恰好落在x轴上时,请直接写出此时点P的坐标.

    【考点】二次函数综合题. 版权所有
    【专题】函数的综合应用.
    【分析】(1)由抛物线的顶点坐标可设抛物线的解析式为y=a(x﹣1)2+4,由点C的坐标利用待定系数法可求出抛物线的解析式,进而可得出a,b,c的值;
    (2)利用一次函数图象上点的坐标特征可求出点D,G的坐标,进而可求出DG的长度,分DG=DM,GD=GM两种情况考虑:①当DG=DM时,由等腰三角形的性质可得出HG=HM1,进而可得出点M1的坐标;②当GD=GM时,由等腰三角形的性质可得出GM2=GM3=,结合点G的坐标可得出点M2,M3的坐标.综上,此问得解;
    (3)过点E作EN⊥直线DE,交x轴于点N,则△DOE∽△DEN,利用相似三角形的性质可求出点N的坐标,由点E,N的坐标利用待定系数法可求出直线EN的解析式,设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R,设直线PQ的解析式为y=﹣2x+m,利用一次函数图象上点的坐标特征可求出点Q的坐标,联立直线PQ和直线DE的解析式成方程组,通过解方程组可得出点R的坐标,进而可得出点P的坐标,由点P的坐标利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可得出m的值,再将其代入点P的坐标中即可得出结论.
    【解答】解:(1)∵抛物线顶点F的坐标为(1,4),
    ∴设抛物线的解析式为y=a(x﹣1)2+4.
    将C(0,3)代入y=a(x﹣1)2+4,得:a+4=3,
    解得:a=﹣1,
    ∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3,
    ∴a=﹣1,b=2,c=3.
    (2)当y=0时,x+1=0,
    解得:x=﹣2,
    ∴点D的坐标为(﹣2,0).
    当x=1时,y=x+1=,
    ∴点G的坐标为(1,),
    ∴DH=1﹣(﹣2)=3,GH=,
    ∴DG==.
    分两种情况考虑(如图1):
    ①当DG=DM时,HG=HM1,
    ∴点M1的坐标为(1,﹣);
    ②当GD=GM时,GM2=GM3=,
    ∴点M2的坐标为(1,),点M3的坐标为(1,).
    综上所述:点M的坐标为(1,﹣),(1,)或(1,).
    (3)过点E作EN⊥直线DE,交x轴于点N,如图2所示.
    当x=0时,y=x+1=1,
    ∴点E的坐标为(0,1),
    ∴OE=1,DE==.
    ∵∠DOE=∠DEN=90°,∠ODE=∠EDN,
    ∴△DOE∽△DEN,
    ∴=,即=,
    ∴DN=,
    ∴点N的坐标为(,0).
    ∵点E(0,1),点N(,0),
    ∴线段EN所在直线的解析式为y=﹣2x+1(可利用待定系数法求出).
    设点P关于直线y=x+1的对称点落在x轴上Q点处,连接PQ交DE于点R.
    设直线PQ的解析式为y=﹣2x+m,
    当y=0时,﹣2x+m=0,
    解得:x=,
    ∴点Q的坐标为(,0).
    联立直线PQ和直线DE的解析式成方程组,得:,
    解得:,
    ∴点R的坐标为(,).
    ∵点R为线段PQ的中点,
    ∴点P的坐标为(,).
    ∵点P在抛物线y=﹣x2+2x+3的图象上,
    ∴﹣()2+2×+3=,
    整理,得:9m2﹣68m+84=0,
    解得:m1=6,m2=,
    ∴点P的坐标为(1,4)或(﹣,).


    【点评】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、勾股定理、等腰三角形的性质、相似三角形的判定与性质、平行线的性质、中点坐标公式以及二次函数图象上点的坐标特征,解题的关键是:(1)巧设二次函数解析式,利用待定系数法求出a值;(2)分DG=DM,GD=GM两种情况,利用等腰三角形的性质求出点M的坐标;(3)利用二次函数图象上点的坐标特征,找出关于m的一元二次方程.
    11.(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
    (1)求点B的坐标和抛物线的解析式;
    (2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
    ①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
    ②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.

    【考点】二次函数综合题. 版权所有
    【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;
    (2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;
    ②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.
    【解答】解:
    (1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,
    ∴0=﹣2+c,解得c=2,
    ∴B(0,2),
    ∵抛物线y=﹣x2+bx+c经过点A,B,
    ∴,解得,
    ∴抛物线解析式为y=﹣x2+x+2;

    (2)①由(1)可知直线解析式为y=﹣x+2,
    ∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,
    ∴P(m,﹣m+2),N(m,﹣m2+m+2),
    ∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,
    ∵△BPN和△APM相似,且∠BPN=∠APM,
    ∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,
    当∠BNP=90°时,则有BN⊥MN,
    ∴N点的纵坐标为2,
    ∴﹣m2+m+2=2,解得m=0(舍去)或m=,
    ∴M(,0);
    当∠NBP=90°时,过点N作NC⊥y轴于点C,

    则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,
    ∵∠NBP=90°,
    ∴∠NBC+∠ABO=90°,
    ∴∠ABO=∠BNC,
    ∴Rt△NCB∽Rt△BOA,
    ∴=,
    ∴=,解得m=0(舍去)或m=,
    ∴M(,0);
    综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);
    ②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),
    ∵M,P,N三点为“共谐点”,
    ∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,
    当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(舍去)或m=0.5;
    当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;
    当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;
    综上可知当M,P,N三点成为“共谐点”时m的值为0.5或﹣1或﹣.
    【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.

    考点卡片
    1.一元二次方程的应用
    1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.
    2、列一元二次方程解应用题中常见问题:
    (1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.
    (2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即 原数×(1+增长百分率)2=后来数.
    (3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.
    (4)运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.
    【规律方法】列一元二次方程解应用题的“六字诀”
    1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.
    2.设:根据题意,可以直接设未知数,也可以间接设未知数.
    3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.
    4.解:准确求出方程的解.
    5.验:检验所求出的根是否符合所列方程和实际问题.
    6.答:写出答案.
    2.二次函数的性质
    二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:
    ①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.
    ②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.
    ③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.
    3.二次函数图象与系数的关系
    二次函数y=ax2+bx+c(a≠0)
    ①二次项系数a决定抛物线的开口方向和大小.
    当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.
    ②一次项系数b和二次项系数a共同决定对称轴的位置.
    当a与b同号时(即ab>0),对称轴在y轴左侧; 当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)
    ③.常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c).
    ④抛物线与x轴交点个数.
    △=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.
    4.二次函数图象上点的坐标特征
    二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).
    ①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.
    ②抛物线与y轴交点的纵坐标是函数解析中的c值.
    ③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=.
    5.待定系数法求二次函数解析式
    (1)二次函数的解析式有三种常见形式:
    ①一般式:y=ax2+bx+c(a,b,c是常数,a≠0); ②顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标; ③交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);
    (2)用待定系数法求二次函数的解析式.
    在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
    6.抛物线与x轴的交点
    求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.
    (1)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
    △=b2﹣4ac决定抛物线与x轴的交点个数.
    △=b2﹣4ac>0时,抛物线与x轴有2个交点;
    △=b2﹣4ac=0时,抛物线与x轴有1个交点;
    △=b2﹣4ac<0时,抛物线与x轴没有交点.
    (2)二次函数的交点式:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0),可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).
    7.二次函数的应用
    (1)利用二次函数解决利润问题
    在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.
    (2)几何图形中的最值问题
    几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.
    (3)构建二次函数模型解决实际问题
    利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.
    8.二次函数综合题
    (1)二次函数图象与其他函数图象相结合问题
    解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.
    (2)二次函数与方程、几何知识的综合应用
    将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.
    (3)二次函数在实际生活中的应用题
    从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
    声明:试题解析著作权属 所有,未经书面同意,不得复制发布

    相关试卷

    2017-2021年四川中考数学真题分类汇编之二次函数: 这是一份2017-2021年四川中考数学真题分类汇编之二次函数,共43页。

    2017-2021年山东中考数学真题分类汇编之二次函数: 这是一份2017-2021年山东中考数学真题分类汇编之二次函数,共41页。试卷主要包含了之间的函数关系如图所示等内容,欢迎下载使用。

    2017-2021年湖南中考数学真题分类汇编之二次函数: 这是一份2017-2021年湖南中考数学真题分类汇编之二次函数,共39页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map