新高考数学一轮复习小题精练8+4+4选填专练 (15)(2份打包,解析版+原卷版)
展开
这是一份新高考数学一轮复习小题精练8+4+4选填专练 (15)(2份打包,解析版+原卷版),文件包含新高考数学一轮复习小题精练8+4+4选填专练15解析版doc、新高考数学一轮复习小题精练8+4+4选填专练15原卷版doc等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。
新高考“8+4+4”小题狂练(15) 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则( )A. B. C. D. 【答案】A【解析】【分析】根据一元二次不等式和分式不等式的解法求得集合,,再结合集合交集的运算,即可求解.【详解】由题意,集合,,则.故选:A.【点睛】本题主要考查了集合的交集的概念及运算,以及一元二次不等式和分式不等式的解法,其中解答中根据一元二次不等式和分式不等式的解法求得集合是解答的关键,着重考查运算与求解能力.2. 已知为虚数单位,,复数,则( )A. B. C. D. 【答案】B【解析】【分析】由复数的除法运算,可得,即可求解,得到答案.详解】由题意,复数,得,所以,故选B.【点睛】本题主要考查了复数的运算,其中解答中熟记复数的基本运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.3. 命题“”的否定是( )A. B. C. D. 【答案】C【解析】【分析】根据全称命题的否定形式书写.【详解】命题“”的否定是,.故选C【点睛】本题考查全称命题的否定,属于基础题型.4. 已知向量,若,则( )A. 0 B. 1 C. 2 D. 3【答案】C【解析】【分析】根据向量的坐标运算,求得,再结合,即可求解.【详解】由题意,向量,可得,因为,可得,解得.故选:C.【点睛】本题主要考查了向量的坐标运算,以及共线向量的坐标表示及应用,其中解答中熟记向量的共线的坐标表示,列出方程是解答的关键,着重考查了运算与求解能力.5. 二项式的展开式中项的系数为10,则( )A. 8 B. 6 C. 5 D. 10【答案】C【解析】【分析】写出二项式展开式的通项公式,再令的幂指数为3,即可求出的值.【详解】由二项式的展开式的通项得:令 ,得,则 ,所以,解得,故选C.【点睛】本题考查二项式定理的应用,二项式展开式的通项公式,属于基础题.6. 已知,,,则( )A. B. C. D. 【答案】A【解析】【分析】利用指对函数的单调性,借助中间量0,1比较大小.【详解】,,,所以,故选:A.【点睛】利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值0,1的应用,有时候要借助其“桥梁”作用,来比较大小.7. 已知圆关于直线对称,则圆C中以为中点的弦长为( )A. 1 B. 2 C. 3 D. 4【答案】D【解析】【分析】圆关于直线对称即说明直线过圆心,即可求出,即可由中点弦求出弦长.【详解】依题意可知直线过圆心,即,.故.圆方程配方得,与圆心距离为1,故弦长为.故选D.【点睛】本题考查直线与圆的位置关系,利用中点弦三角形解弦长,属于基础题。8. 用一个体积为的球形铁质原材料切割成为正三棱柱的工业用零配件,则该零配件体积的最大值为( )A. B. C. D. 【答案】D【解析】【分析】画出正三棱柱内接于球的直观图,设底面边长,由球的体积公式得,再由勾股定理得正三棱柱的,代入体积公式,利用基本不等式可求得.【详解】如图所示,正三棱柱内接于球的直观图,为底面的中心,因为.设底面边长,则,,等号成立当且仅当,故选D.【点睛】本题以实际问题为背景,本质考查正三棱柱内接于球,考查正三棱柱体积的最值,考查空间想象能力和运算求解能力,注意利用三元基本不等式求最值,使问题求解计算变得更简洁.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9. 下列说法正确的是( )A. 将一组数据中的每个数据都乘以同一个非零常数a后,方差也变为原来的a倍B. 设有一个回归方程,变量x增加1个单位时,y平均减少5个单位C. 线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越弱D. 在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),则P(ξ>1)=0.5【答案】BD【解析】【分析】对A,方差应变为原来的a2倍;对B,x增加1个单位时计算y值与原y值比较可得结论;线性相关系数|r|越大,两个变量的线性相关性越强,反之,线性相关性越弱;根据正态曲线关于x=1对称即可判断.【详解】对于选项A:将一组数据中的每个数据都乘以同一个非零常数a后,方差变为原来的a2倍,故错误.对于选项B:若有一个回归方程,变量x增加1个单位时,,故y平均减少5个单位,正确.对于选项C:线性相关系数|r|越大,两个变量的线性相关性越强;反之,线性相关性越弱,错误.对于选项D:在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),由于正态曲线关于x=1对称,则P(ξ>1)=0.5,正确.故选:BD【点睛】本题考查样本数据方差的计算、线性回归方程的相关计算、正态分布的概率问题,属于基础题.10. 已知双曲线的左、右焦点分别为为双曲线上一点,且,若,则对双曲线中的有关结论正确的是( )A. B. C. D. 【答案】ABCD【解析】【分析】根据余弦定理列方程得出a,c的关系,再计算离心率.【详解】由双曲线的定义知:,由可得,在中,由余弦定理可得:,解得或,或,或,又,可得或故选:ABCD【点睛】本题考查了双曲线的性质,离心率的计算,属于基础题.11. 已知函数,,则以下结论错误的是( )A. 任意的,且,都有B. 任意的,且,都有C. 有最小值,无最大值D. 有最小值,无最大值【答案】ABC【解析】【分析】根据与的单调性逐个判定即可.【详解】对A, 中为增函数,为减函数.故为增函数.故任意的,且,都有.故A错误.对B,易得反例,.故不成立.故B错误.对C, 当因为为增函数,且当时,当时.故无最小值无最大值.故C错误.对D, ,当且仅当即时等号成立. 当时.故有最小值,无最大值.故选:ABC【点睛】本题主要考查了函数的单调性与最值的判定,需要根据指数函数的性质分析.属于基础题.12. 如图,正方体的棱长为1,动点E在线段上,F、M分别是AD、CD的中点,则下列结论中正确的是( )A. B. 平面C. 存在点E,使得平面平面 D. 三棱锥的体积为定值【答案】ABD【解析】【分析】对A,根据中位线的性质判定即可.对B,利用平面几何方法证明再证明平面即可.对C,根据与平面有交点判定即可.对D,根据三棱锥以为底,且同底高不变,故体积不变判定即可.【详解】在A中,因为分别是的中点,所以,故A正确;在B中,因为,,故,故.故,又有,所以平面,故B正确;在C中,与平面有交点,所以不存在点,使得平面平面,故C错误.在D中,三棱锥以面为底,则高是定值,所以三棱锥的体积为定值,故D正确.故选:ABD【点睛】本题主要考查了线面垂直平行的证明与判定,同时也考查了锥体体积等问题.属于中档题.三、填空题:本题共4小题,每小题5分,共20分.13. 若,则的值为__________.【答案】【解析】【分析】利用二倍角的正弦公式和平方关系式的逆用公式弦化切可得,利用两角和的正切公式可得,然后相除可得.【详解】因为,所以,,所以.故答案为: 【点睛】本题考查了二倍角的正弦公式,两角和的正切公式,属于中档题.14. 甲、乙等5名同学参加志愿者服务,分别到三个路口硫导交通,每个路口有1名或2名志原者,则甲、乙在同一路口的分配方案共有种数________(用数字作答).【答案】【解析】【分析】甲、乙两人在同一路口时,根据题意可知:另外两人在同一路口,剩下一个在第三个路口,即可求解.【详解】解: 甲、乙两人在同一路口分配方案,故答案为.【点睛】本题考查排列组合基础知识,考查运算求解能力,是基础题.15. 抛物线:的焦点坐标是________;经过点的直线与抛物线相交于,两点,且点恰为的中点,为抛物线的焦点,则________.【答案】 (1). (2). 9【解析】【分析】根据抛物线的标准方程求得准线方程和焦点坐标,利用抛物线的定义把转化为,再转化为,从而得出结论.【详解】解:抛物线:的焦点.
过作准线交准线于,过作准线交准线于,过作准线交准线 于,
则由抛物线的定义可得.
再根据为线段的中点,,∴,
故答案为:焦点坐标是,.【点睛】本题考查抛物线的定义的应用,其中不要忽略中位线的性质,梯形的中位线是上底与下底和的一半,属于中档题.16. 在直三棱柱中,且,,设其外接球的球心为,且球的表面积为,则的面积为__________.【答案】【解析】【分析】先计算球的半径为,确定球心为的中点,根据边角关系得到,计算面积得到答案.【详解】球的表面积为如图所示:为中点,连接 ,故三角形的外心在中点上,故外接球的球心为的中点.在中:,故;在中:,,故,故 故答案【点睛】本题考查了三棱柱的外接球问题,确定球心的位置是解题的关键.
相关试卷
这是一份新高考数学一轮复习小题精练8+4+4选填专练 (42)(2份打包,解析版+原卷版),文件包含新高考数学一轮复习小题精练8+4+4选填专练42解析版doc、新高考数学一轮复习小题精练8+4+4选填专练42原卷版doc等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
这是一份新高考数学一轮复习小题精练8+4+4选填专练 (36)(2份打包,解析版+原卷版),文件包含新高考数学一轮复习小题精练8+4+4选填专练36解析版doc、新高考数学一轮复习小题精练8+4+4选填专练36原卷版doc等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份新高考数学一轮复习小题精练8+4+4选填专练 (26)(2份打包,解析版+原卷版),文件包含新高考数学一轮复习小题精练8+4+4选填专练26解析版doc、新高考数学一轮复习小题精练8+4+4选填专练26原卷版doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。