数学必修 第一册1.4 充分条件与必要条件学案设计
展开1.掌握充分条件、必要条件与充要条件的判断方法.
2.能够写出命题的充分条件、必要条件及充要条件.
3.会对某些命题的充要条件进行证明.
充要条件
如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有p⇒q,又有q⇒p,记作p⇔q.此时p既是q的充分条件,也是q的必要条件.我们说p是q的充分必要条件,简称为充要条件.
如果p是q的充要条件,那么q也是p的充要条件,即如果p⇔q,那么p与q互为充要条件.
温馨提示:(1)从概念的角度去理解充分条件、必要条件、充要条件
①若p⇒q,则称p是q的充分条件,q是p的必要条件.
②若p⇔q,则p是q的充要条件.
③若p⇒q,且q eq \(⇒,/)p,则称p是q的充分不必要条件.
④若p eq \(⇒,/)q,且q⇒p,则称p是q的必要不充分条件.
⑤若p eq \(⇒,/)q,且q eq \(⇒,/)p,则称p是q的既不充分也不必要条件.
(2)“⇔”的传递性
若p是q的充要条件,q是s的充要条件,即p⇔q,q⇔s,则有p⇔s,即p是s的充要条件.
1.通常我们把两组对边分别平行的四边形叫做平行四边形,即“四边形的两组对边分别平行”是“四边形是平行四边形”的什么条件,你还能写出“四边形是平行四边形”的其他充要条件吗?
[答案] 充要条件 两组对边分别相等的四边形、对角线互相平分的四边形等
2.判断正误(正确的打“√”,错误的打“×”)
(1)当p是q的充要条件时,也可说成q成立当且仅当p成立.( )
(2)符号“⇔”具有传递性.( )
(3)若p eq \(⇒,/)q和q eq \(⇒,/)p有一个成立,则p一定不是q的充要条件.( )
(4)数学中的每一个定义都是一个充要条件.( )
[答案] (1)√ (2)√ (3)√ (4)√
题型一 充要条件的判断
【典例1】 在下列各题中,试判断p是q的什么条件.
(1)p:a+5是无理数,q:a是无理数;
(2)若a,b∈R,p=a2+b2=0,q:a=b=0;
(3)p:A∩B=A,q:∁UB⊆∁UA.
[思路导引] 判断是否p⇒q,q⇒p.
[解] (1)因为a+5是无理数⇒a是无理数,并且a是无理数⇒a+5是无理数,所以p是q的充要条件.
(2)因为a2+b2=0⇒a=b=0,并且a=b=0⇒a2+b2=0,所以p是q的充要条件.
(3)因为A∩B=A⇒A⊆B⇒∁UA⊇∁UB,并且∁UB⊆∁UA⇒B⊇A⇒A∩B=A,所以p是q的充要条件.
[变式] 已知p是q的充分条件,q是r的必要条件,也是s的充分条件,r是s的必要条件,问:
(1)p是r的什么条件?
(2)s是q的什么条件?
(3)p,q,r,s中哪几对互为充要条件?
[解] 作出“⇒”图,如右图所示,
可知:p⇒q,r⇒q,q⇒s,s⇒r.
(1)p⇒q⇒s⇒r,且r⇒q,q能否推出p未知,∴p是r的充分条件.
(2)∵s⇒r⇒q,q⇒s,∴s是q的充要条件.
(3)共有三对充要条件,q⇔s;s⇔r;r⇔q.
判断p是q的充分必要条件的2种思路
(1)命题角度:判断p是q的充分必要条件,主要是判断p⇒q及q⇒p这两个命题是否成立.
(2)集合角度:当不容易判断p⇒q及q⇒p的真假时,也可以从集合角度去判断,结合集合中“小集合⇒大集合”的关系来理解,这对解决与逻辑有关的问题是大有益处的.情形如下:记命题p:集合A,命题q:集合B.
①若A⊆B,则p是q的充分条件,若A?B,则p是q的充分不必要条件.
②若B⊆A,则p是q的必要条件,若B?A,则p是q的必要不充分条件.
③若A=B,则p,q互为充要条件.
④若A⃘B且B⃘A,则p既不是q的充分条件,也不是q的必要条件.
此外,对于较复杂的关系,常用⇒,⇐,⇔等符号进行传递,画出它们的综合结构图,可降低解题难度.
[针对训练]
1.指出下列各题中,p是q的什么条件?
(1)p:A∪B=A,q:A∩B=B;
(2)已知实数a,b,p:a>0且b>0,q:a+b>0且ab>0;
(3)p:eq \b\lc\{\rc\ (\a\vs4\al\c1(α>2,,β>2,))q:eq \b\lc\{\rc\ (\a\vs4\al\c1(α+β>4,,αβ>4.))
[解] (1)因为A∪B=A⇔B⊆A,而A∩B=B⇔B⊆A,
所以A∪B=A⇔A∩B=B,所以p是q的充要条件.
(2)由a>0且b>0⇒a+b>0且ab>0,并且由a+b>0且ab>0⇒a>0且b>0,所以p是q的充要条件.
(3)由eq \b\lc\{\rc\ (\a\vs4\al\c1(α>2,,β>2,))根据不等式的性质可得eq \b\lc\{\rc\ (\a\vs4\al\c1(α+β>4,,αβ>4.))
即p⇒q,而由eq \b\lc\{\rc\ (\a\vs4\al\c1(α+β>4,,αβ>4))不能推出eq \b\lc\{\rc\ (\a\vs4\al\c1(α>2,,β>2.))
如:α=1,β=5满足eq \b\lc\{\rc\ (\a\vs4\al\c1(α+β>4,,αβ>4,))但不满足α>2.
所以p是q的充分不必要条件.
题型二 充要条件的证明
【典例2】 已知ab≠0,求证:a+b=1是a3+b3+ab-a2-b2=0的充要条件.
[思路导引] 从充分性、必要性两方面证明.
[证明] ①充分性:
∵a+b=1,∴b=1-a,
∴a3+b3+ab-a2-b2=a3+(1-a)3+a(1-a)-a2-(1-a)2=a3+1-3a+3a2-a3+a-a2-a2-1+2a-a2=0,即a3+b3+ab-a2-b2=0.
②必要性:∵a3+b3+ab-a2-b2=0,
∴(a+b)(a2-ab+b2)-(a2-ab+b2)=0,
∴(a2-ab+b2)(a+b-1)=0.
∵ab≠0,∴a≠0且b≠0,∴a2-ab+b2≠0.
∴a+b-1=0,∴a+b=1.
综上可知,当ab≠0时,a+b=1是a3+b3+ab-a2-b2=0的充要条件.
充要条件的证明
证明充要条件时要从充分性和必要性两个方面分别证明,首先分清哪个是条件,哪个是结论,然后确定推出方向,即充分性需要证明“条件”⇒“结论”,必要性需要证明“结论”⇒“条件”.
[针对训练]
2.已知a,b是实数,求证:a2-b2=1是a4-b4-2b2=1成立的充分条件.该条件是否为必要条件?试证明你的结论.
[证明] 因为a2-b2=1,
所以a4-b4-2b2=(a2-b2)·(a2+b2)-2b2=(a2+b2)-2b2=a2-b2=1.
即a2-b2=1是a4-b4-2b2=1成立的充分条件.
另一方面,若a4-b4-2b2=1,
即a4-(b4+2b2+1)=0,a4-(b2+1)2=0,
(a2-b2-1)(a2+b2+1)=0.
又a2+b2+1≠0,所以a2-b2-1=0,即a2-b2=1.
因此a2-b2=1是a4-b4-2b2=1成立的必要条件.
题型三 探求充要条件
【典例3】 求关于x的方程ax2+2x+1=0至少有一个负实根的充要条件.
[思路导引] 至少有一个负根可能是一个负根也可能是两个负根,需要分类讨论.
[解] ①当a=0时,方程为一元一次方程,其根为x=-eq \f(1,2),符合要求.
②当a≠0时,方程为一元二次方程,此时ax2+2x+1=0有实根的充要条件是判别式Δ≥0,即4-4a≥0,从而a≤1.设方程ax2+2x+1=0的两根分别为x1,x2,则x1+x2=-eq \f(2,a),x1x2=eq \f(1,a).
(ⅰ)方程ax2+2x+1=0有一负根一正根的充要条件为
eq \b\lc\{\rc\ (\a\vs4\al\c1(a≤1,,\f(1,a)<0))⇒a<0;
(ⅱ)方程ax2+2x+1=0有两个负根的充要条件为
eq \b\lc\{\rc\ (\a\vs4\al\c1(a≤1,,-\f(2,a)<0,,\f(1,a)>0))⇒0综上所述,方程ax2+2x+1=0至少有一个负实根的充要条件是a≤1.
探求充要条件的2种方法
(1)先寻找必要条件,即将探求充要条件的对象视为结论,寻找使之成立的条件;再证明此条件是该对象的充分条件,即从充分性和必要性两方面说明.
(2)将原命题进行等价变形或转换,直至获得其成立的充要条件,探求的过程同时也是证明的过程,因此探求过程每一步都是等价的,所以不需要将充分性和必要性分开来证.
[针对训练]
3.已知方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件.
[解] 方程x2+(2k-1)x+k2=0,则方程有两个大于1的实数根x1,x2:
⇔eq \b\lc\{\rc\ (\a\vs4\al\c1(Δ=2k-12-4k2≥0,,x1-1x2-1>0,,x1-1+x2-1>0))⇔eq \b\lc\{\rc\ (\a\vs4\al\c1(k≤\f(1,4),,x1x2-x1+x2+1>0,,x1+x2-2>0))
⇔eq \b\lc\{\rc\ (\a\vs4\al\c1(k≤\f(1,4),,k2+2k-1+1>0,,-2k-1-2>0))⇔k<-2.
所以使方程有两个大于1的实根的充要条件是k<-2.
课堂归纳小结
1.充要条件的判断有三种方法:定义法、等价命题法、集合法.
2.充要条件的证明与探求
(1)充要条件的证明分充分性的证明和必要性的证明.在证明时要注意两种叙述方式的区别:
①p是q的充要条件,则由p⇒q证的是充分性,由q⇒p
证的是必要性;
②p的充要条件是q,则由p⇒q证的是必要性,由q⇒p证的是充分性.
(2)探求充要条件,可先求出必要条件,再证充分性;如果能保证每一步的变形转化过程都可逆,也可以直接求出充要条件.
1.设x∈R,则“x<-1”是“|x|>1”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
[解析] 因为x<-1⇒|x|>1,而|x|>1⇒x<-1或x>1,故“x<-1”是“|x|>1”的充分不必要条件.
[答案] A
2.“x2+(y-2)2=0”是“x(y-2)=0”的( )
A.必要不充分条件 B.充分不必要条件
C.充要条件 D.既不充分也不必要条件
[解析] x2+(y-2)2=0,即x=0且y=2,∴x(y-2)=0.反之,x(y-2)=0,即x=0或y=2,x2+(y-2)2=0不一定成立.
[答案] B
3.已知A,B是非空集合,命题p:A∪B=B,命题q:A?B,则p是q的( )
A.充要条件 B.充分不必要条件
C.既不充分也不必要条件 D.必要不充分条件
[解析] 由A∪B=B,得A?B或A=B;反之,由A?B,得A∪B=B,所以p是q的必要不充分条件.
[答案] D
4.关于x的不等式|x|>a的解集为R的充要条件是________.
[解析] 由题意知|x|>a恒成立,∵|x|≥0,∴a<0.
[答案] a<0
5.已知x,y都是非零实数,且x>y,求证:eq \f(1,x)
[证明] 证法一:①充分性:由xy>0及x>y,得eq \f(x,xy)>eq \f(y,xy),即eq \f(1,x)
所以eq \f(1,x)
证法二:eq \f(1,x)
所以eq \f(1,x)
即eq \f(1,x)
课后作业(七)
复习巩固
一、选择题
1.已知命题“若p,则q”,假设其逆命题为真,则p是q的( )
A.充分条件 B.必要条件
C.充要条件 D.既不充分也不必要条件
[解析] 逆命题“若q,则p”为真命题,则p是q的必要条件.
[答案] B
2.设x∈R,则“x>eq \f(1,2)”是“2x2+x-1>0”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
[解析] 不等式2x2+x-1>0,即(x+1)(2x-1)>0,解得x>eq \f(1,2)或x<-1,所以由x>eq \f(1,2)可以得到不等式2x2+x-1>0成立,但由2x2+x-1>0不一定得到x>eq \f(1,2),所以“x>eq \f(1,2)”是“2x2+x-1>0”的充分而不必要条件.
[答案] A
3.函数y=x2+mx+1的图象关于直线x=1对称的充要条件是( )
A.m=-2 B.m=2
C.m=-1 D.m=1
[解析] 函数y=x2+mx+1的图象关于直线x=1对称的充要条件是-eq \f(m,2×1)=1,即m=-2,故选A.
[答案] A
4.已知p:x≤-1或x≥3,q:x>5,则p是q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
[解析] 由{x|x>5}是{x|x≤-1或x≥3}的真子集,可知p是q的必要不充分条件.
[答案] B
5.若x,y∈R,则“x≤1,y≤1”是“x2+y2≤1”成立的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
[解析] 因为若x,y∈R,x≤1,y≤1,则x2+y2≤1不一定成立,所以充分性不成立.若x2+y2≤1,则可得x≤1且y≤1,所以必要性成立.
[答案] B
二、填空题
6.“x2-1=0”是“|x|-1=0”的________条件.(从“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选一个合适的填空)
[答案] 充要
7.如果不等式x≤m成立的充分不必要条件是1≤x≤2,则m的最小值为________.
[解析] 由题意可知:1≤x≤2⇒x≤m,反之不成立,所以m≥2,即m的最小值为2.
[答案] 2
8.下列命题中是真命题的是________(填序号).
①x>2且y>3是x+y>5的充要条件;
②“x>1”是“|x|>0”的充分不必要条件;
③b2-4ac<0是ax2+bx+c<0(a≠0)的解集为R的充要条件;
④三角形的三边满足勾股定理的充要条件是此三角形为直角三角形.
[解析] ①因为由x>2且y>3⇒x+y>5,但由x+y>5不能推出x>2且y>3,所以x>2且y>3是x+y>5的充分不必要条件.②因为由x>1⇒|x|>0,而由|x|>0不能推出x>1,所以x>1是|x|>0的充分不必要条件.③因为由b2-4ac<0不能推出ax2+bx+c<0(a≠0)的解集为R(a>0时解集为∅),而由ax2+bx+c<0(a≠0)的解集为R⇒b2-4ac<0,所以b2-4ac<0是ax2+bx+c<0(a≠0)的解集为R的必要不充分条件.④由三角形的三边满足勾股定理⇒此三角形为直角三角形,由三角形为直角三角形⇒该三角形的三边满足勾股定理,故②④是真命题.
[答案] ②④
三、解答题
9.已知p:0
则方程mx2-2x+3=0有两个同号且不相等的实数根等价于eq \b\lc\{\rc\ (\a\vs4\al\c1(m≠0,,Δ=4-4×3×m>0,⇔0
因此,p是q的充要条件.
10.求方程x2+kx+1=0与x2+x+k=0有一个公共实根的充要条件.
[解] eq \b\lc\{\rc\ (\a\vs4\al\c1(x2+kx+1=0,,x2+x+k=0,))⇔eq \b\lc\{\rc\ (\a\vs4\al\c1(x2-x2+xx+1=0,,x2+x+k=0,))
⇔eq \b\lc\{\rc\ (\a\vs4\al\c1(1-x3=0,,x2+x+k=0,))⇔eq \b\lc\{\rc\ (\a\vs4\al\c1(x=1,,k=-2.))
所以两方程有一公共实根的充要条件为k=-2.
综合运用
11.“a>b”是“a>|b|”的( )
A.充分不必要条件
B.必要不充分条件
C.既是充分条件,也是必要条件
D.既不充分也不必要条件
[解析] 若a>b,不如令a=1,b=-2,则a>|b|不成立,所以充分性不成立,若a>|b|,则有a>b,所以“a>b”是“a>|b|”的必要不充分条件.
[答案] B
12.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件,但不是乙的必要条件,那么( )
A.丙是甲的充分条件,但不是甲的必要条件
B.丙是甲的必要条件,但不是甲的充分条件
C.丙是甲的充要条件
D.丙既不是甲的充分条件,也不是甲的必要条件
[解析] 因为甲是乙的必要条件,所以乙⇒甲.又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙 eq \(⇒,/)丙,如图.综上,有丙⇒甲,但甲 eq \(⇒,/)丙,即丙是甲的充分条件,但不是甲的必要条件.
[答案] A
13.“|x-1|<2成立”是“x(x-3)<0成立”的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).
[解析] |x-1|<2⇒-1
14.设p:eq \f(1,2)≤x≤1;q:a≤x≤a+1,若p是q的充分不必要条件,则实数a的取值范围是________.
[解析] ∵q:a≤x≤a+1,p是q的充分不必要条件,
∴eq \b\lc\{\rc\ (\a\vs4\al\c1(a≤\f(1,2),a+1≥1)),解得0≤a≤eq \f(1,2).
[答案] eq \b\lc\{\rc\}(\a\vs4\al\c1(a\b\lc\|\rc\ (\a\vs4\al\c1(0≤a≤\f(1,2)))))
15.设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是A=90°.
[证明] ①必要性:设方程x2+2ax+b2=0与x2+2cx-b2=0有公共根x0,
则xeq \\al(2,0)+2ax0+b2=0,xeq \\al(2,0)+2cx0-b2=0,
两式相减,可得x0=eq \f(b2,c-a),
将此式代入xeq \\al(2,0)+2ax0+b2=0整理得b2+c2=a2,
故A=90°.
②充分性:∵A=90°,∴b2+c2=a2,∴b2=a2-c2.
将此式代入方程x2+2ax+b2=0,
可得x2+2ax+a2-c2=0,
即(x+a-c)(x+a+c)=0,
将b2=a2-c2代入方程x2+2cx-b2=0,
可得x2+2cx+c2-a2=0,
即(x+c-a)(x+c+a)=0,
故两方程有公共根x=-(a+c).
∴方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是A=90°.
高中数学1.4 空间向量的应用第2课时学案设计: 这是一份高中数学1.4 空间向量的应用第2课时学案设计,共30页。
高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.4 空间向量的应用第1课时学案: 这是一份高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.4 空间向量的应用第1课时学案,共27页。
高中数学人教A版 (2019)必修 第一册1.4 充分条件与必要条件学案及答案: 这是一份高中数学人教A版 (2019)必修 第一册1.4 充分条件与必要条件学案及答案,共10页。学案主要包含了知识点框架,例题练习,课后巩固等内容,欢迎下载使用。