数学九年级上册5 一元二次方程的根与系数的关系教案设计
展开2.4一元二次方程的根与系数的关系
教学目标
1.在已有的一元二次方程解法的基础上,探索出一元二次方程根与系数的关系,及其此关系的运用.
2.通过观察、实践、讨论等活动,经历发现问题,发现关系的过程.
教学重难点
【教学重点】
观察数字系数的一元二次方程的两个根之和,及两个根之积与原方程系数之间的关系
【教学难点】
对根与系数这一性质进行应用
课前准备
课件等.
教学过程
一、情景导入
解下列方程,将得到的解填入下面的表格中,你发现表格中两个解的和与积和原来的方程有什么联系?
(1)x2-2x=0;
(2)x2+3x-4=0;
(3)x2-5x+6=0.
方程 | x1 | x2 | x1+x2 | x1·x2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
二、合作探究
探究点一:一元二次方程的根与系数的关系
利用根与系数的关系,求方程3x2+6x-1=0的两根之和、两根之积.
解析:由一元二次方程根与系数的关系可求得.
解:这里a=3,b=6,c=-1.
Δ=b2-4ac=62-4×3×(-1)=36+12=48>0,
∴方程有两个实数根.
设方程的两个实数根是x1,x2,
那么x1+x2=-2,x1·x2=-.
方法总结:如果方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=-,x1x2=.
探究点二:一元二次方程的根与系数的关系的应用
【类型一】利用根与系数的关系求代数式的值
设x1,x2是方程2x2+4x-3=0的两个根,利用根与系数的关系,求下列各式的值:
(1)(x1+2)(x2+2); (2)+.
解析:先确定a,b,c的值,再求出x1+x2与x1x2的值,最后将所求式子做适当变形,把x1+x2与x1x2的值整体代入求解即可.
解:根据根与系数的关系,得x1+x2=-2,x1x2=-.
(1)(x1+2)(x2+2)=x1x2+2(x1+x2)+4=-+2×(-2)+4=-;
(2)+====-.
方法总结:先确定a,b,c的值,再求出x1+x2与x1x2的值,最后将所求式子做适当的变形,把x1+x2与x1x2的值整体代入求解即可.
【类型二】已知方程一根,利用根与系数的关系求方程的另一根
已知方程5x2+kx-6=0的一个根为2,求它的另一个根及k的值.
解析:由方程5x2+kx-6=0可知二次项系数和常数项,所以可根据两根之积求出方程另一个根,然后根据两根之和求出k的值.
解:设方程的另一个根是x1,则2x1=-,
∴x1=-.又∵x1+2=-,
∴-+2=-,∴k=-7.
方法总结:对于一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0),当已知二次项系数和常数项时,可求得方程的两根之积;当已知二次项系数和一次项系数时,可求得方程的两根之和.
【类型三】判别式及根与系数关系的综合应用
已知α、β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=-1,求m的值.
解析:利用韦达定理表示出α+β,αβ,再由+=-1建立方程,求解m的值.
解:∵α、β是方程的两个不相等的实数根,
∴α+β=-(2m+3),αβ=m2.
又∵+===-1,
化简整理,得m2-2m-3=0.
解得m=3或m=-1.
当m=-1时,方程为x2+x+1=0,
此时Δ=12-4<0,方程无解,
∴m=-1应舍去.
当m=3时,方程为x2+9x+9=0,
此时Δ=92-4×9>0,
方程有两个不相等的实数根.
综上所述,m=3.
易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.
三、板书设计
四、教学反思
让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
数学九年级上册第二章 一元二次方程5 一元二次方程的根与系数的关系教案及反思: 这是一份数学九年级上册第二章 一元二次方程5 一元二次方程的根与系数的关系教案及反思,共5页。教案主要包含了教学目标,教学重点和难点,教学过程,板书设计等内容,欢迎下载使用。
初中数学北师大版九年级上册5 一元二次方程的根与系数的关系教案: 这是一份初中数学北师大版九年级上册5 一元二次方程的根与系数的关系教案,共5页。教案主要包含了预习新知,合作探究,练习巩固,拓展提高,典型例题等内容,欢迎下载使用。
初中数学人教版九年级上册21.1 一元二次方程获奖教案设计: 这是一份初中数学人教版九年级上册21.1 一元二次方程获奖教案设计,共7页。教案主要包含了教学重难点,教学用具,教学过程设计等内容,欢迎下载使用。