2020-2021学年21.2 二次函数的图象和性质第1课时教案
展开21.2.2二次函数y=ax2+bx+c的图象和性质
第1课时二次函数y=ax2+k的图象和性质
教学目标
【知识与能力】
1、能利用描点法正确作出函数y=ax2+b的图象。
2、经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系.
【过程与方法】
使学生经历探索二次函数y=ax2+b的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.
【情感态度价值观】
使学生经历探索二次函数y=ax2+b的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.
教学重难点
【教学重点】
会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
【教学难点】
正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系。
课前准备
课件等。
教学过程
一、提出问题
1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。
2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?
二、分析问题,解决问题
问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?
(画出函数y=2x2和函数y=2x2的图象,并加以比较)
问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?
解:(1)列表:
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | … |
y=x2 | … | 18 | 8 | 2 | 0 | 2 | 8 | 18 | … |
y=x2+1 | … | 19 | 9 | 3 | l | 3 | 9 | 19 | … |
(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。
(3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。
问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?
教师引导学生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。
教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。
问题4:函数y=2x2+1和y=2x2的图象有什么联系?
由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。
问题5:现在你能回答前面提出的第2个问题了吗?
让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?
完成填空:
当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大,当x______时,函数取得最______值,最______值y=______.
以上就是函数y=2x2+1的性质。
三、做一做
问题7:先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?
教学要点
让学生发表意见,归纳为:函数y=2x2-2与函数y=2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y=2x2-2的图象可以看成是将函数y=2x2的图象向下平移两个单位得到的。
问题8:你能说出函数y=2x2-2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?
教学要点
1.让学生口答,函数y=2x2-2的图象的开口向上,对称轴为y轴,顶点坐标是(0,-2);
2.分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=-2。
问题9:在同一直角坐标系中。函数y=-x2+2图象与函数y=-x2的图象有什么关系?
要求学生能够画出函数y=-x2与函数y=-x2+2的草图,由草图观察得出结论:函数y=-1/3x2+2的图象与函数y=-x2的图象的开口方向、对称轴相同,但顶点坐标不同,函数y=-x2+2的图象可以看成将函数y=-x2的图象向上平移两个单位得到的。
问题10:你能说出函数y=-x2+2的图象的开口方向、对称轴和顶点坐标吗?
[函数y=-x2+2的图象的开口向下,对称轴为y轴,顶点坐标是(0,2)]
问题11:这个函数图象有哪些性质?
让学生观察函数y=-x2+2的图象得出性质:当x<0时,函数值y随x的增大而增大;当x>0时,函数值y随x的增大而减小;当x=0时,函数取得最大值,最大值y=2。
四、练习: 练习1、2、3。
五、小结
1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?
2.你能说出函数y=ax2+k具有哪些性质?
教学反思
教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数的图象与性质,体会数学建模的数形结合思想方法.
沪科版九年级上册21.1 二次函数优质课第4课时教学设计及反思: 这是一份沪科版九年级上册21.1 二次函数优质课第4课时教学设计及反思,共5页。
沪科版九年级上册21.1 二次函数精品第1课时教案设计: 这是一份沪科版九年级上册21.1 二次函数精品第1课时教案设计,共5页。教案主要包含了归纳总结等内容,欢迎下载使用。
沪科版九年级上册21.2 二次函数的图象和性质第3课时教案: 这是一份沪科版九年级上册21.2 二次函数的图象和性质第3课时教案,共2页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点等内容,欢迎下载使用。