![2022九年级数学上册第2章一元二次方程2.2一元二次方程的解法第4课时教案新版湘教版01](http://www.enxinlong.com/img-preview/2/3/13416540/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学湘教版九年级上册2.2 一元二次方程的解法第4课时教学设计
展开2.2 一元二次方程的解法
第4课时
教学目标
【知识与能力】
1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。
2、会用因式分解法解某些一元二次方程。
3、进一步让学生体会“降次”化归的思想。
【过程与方法】
经历探索因式分解法解一元二次方程的方法,体会解一元二次方程的基本思想是“降次”。
【情感态度价值观】
通过用因式分解法将一元二次方程转化为一元一次方程的理解,让学生体会到数学的学习循序渐进的,从而培养学生脚踏实地的精神。
教学重难点
【教学重点】
体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。
【教学难点】
用因式分解法解某些一元二次方程。
课前准备
无
教学过程
一、预学
1、提问:
(1) 解一元二次方程的基本思路是什么?
(2) 现在我们已有了哪几种将一元二次方程“降次”为一元一次方程的方法?
2、用两种方法解方程:9(1-3x)2=25
二、探究
说明:可用因式分解法或直接开平方法解此方程。解得x1= ,x2=- 。
1、说一说:因式分解法适用于解什么形式的一元二次方程。
归纳结论:因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。
2、想一想:展示课本1.1节问题二中的方程0.01t2-2t =0,这个方程能用因式分解法解吗?
引导学生探索用因式分解法解方程0.01t2-2t=0,解答课本1.1节问题二。
把方程左边因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0
解得 tl=0,t2=200。
t1=0表明小明与小亮第一次相遇;t2=200表明经过200s小明与小亮再次相遇。
三、讲解例题
1、展示课本P.8例3。
按课本方式引导学生用因式分解法解一元二次方程。
2、让学生讨论P.9“说一说”栏目中的问题。
要使学生明确:解方程时不能把方程两边都同除以一个含未知数的式子,若方程两边同除以含未知数的式子,可能使方程漏根。
3、展示课本P.9例4。
让学生自己尝试着解,然后看书上的解答,交换批改,并说一说在解题时应注意什么。
四、课堂小结
1、用因式分解法解一元二次方程的基本步骤是:先把一个一元二次方程变形,使它的一边为0,另一边分解成两个一次因式的乘积,然后使每一个一次因式等于0,分别解这两个一元一次方程,得到的两个解就是原一元二次方程的解。
2、在解方程时,千万注意两边不能同时除以一个含有未知数的代数式,否则可能丢失方程的一个根。
五、拓展与提升
用因式分解法解下列一元二次方程。议一议:对于含括号的一元二次方程,应怎样适当变形,再用因式分解法解。
(1) 2(3x-2)=(2-3x)(x+1); (2) (x-1)(x+3)=12。
[解] (1) 原方程可变形为 2(3x-2)+(3x-2)(x+1)=0,
(3x-2)(x+3)=0,
3x-2=0,或x+3=0,
所以xl= ,x2=-3
(2) 去括号、整理得 x2+2x-3=12,x2+2x-15=0,
(x+5)(x-3)=0,
x+5=0或x-3=0,
所以x1=-5,x2=3
先让学生动手解方程,然后交流自己的解题经验,教师引导学生归纳:对于含括号的一元二次方程,若能把括号看成一个整体变形,把方程化成一边为0,另一边为两个一次式的积,就不用去括号,如上述(1);否则先去括号,把方程整理成一般形式,再看是否能将左边分解成两个一次式的积,如上述(2)。
六、布置作业
湘教版九年级上册2.1 一元二次方程精品教案: 这是一份湘教版九年级上册2.1 一元二次方程精品教案,共3页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,归纳结论等内容,欢迎下载使用。
初中数学湘教版九年级上册2.2 一元二次方程的解法教学设计: 这是一份初中数学湘教版九年级上册2.2 一元二次方程的解法教学设计,共2页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点等内容,欢迎下载使用。
初中数学湘教版九年级上册2.2 一元二次方程的解法教学设计: 这是一份初中数学湘教版九年级上册2.2 一元二次方程的解法教学设计,共2页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点等内容,欢迎下载使用。