初中数学湘教版八年级上册3.1 平方根第2课时教学设计
展开3.1 平方根
第2课时
教学目标
1、知道无理数是客观存在的,理解无理数的概念,会判断一个数是有理数还是无理数
2、经历用无理数估算的探索过程,感受“逼近”的数学思想,发展数感,激发学生的探索创新精神.
3、会用计算器求平方根,记住常见平方根的估值.
教学重难点
【教学重点】
无理数的概念。
【教学难点】
判断一个数是有理数还是无理数。
课前准备
无
教学过程
一、新课引入
我们很容易可以做出面积是1平方厘米,4平方厘米,9平方厘米的正方形,因为它们的边长都是整数。你能做出面积是8平方厘米的正方形吗?
二、自主探究
⒈探索活动一:
第一步:首先画出长为4厘米,宽为2厘米的长方形ABCD,它的面积是4×2=8(平方厘米)
第二步:把长方形ABCD沿长边AD的垂直平分线EF对折,得到两个重合的正方形.
第三步:分别连接DE和CE,并沿DE和CE剪开。得:
第四步:最后我们把被分为的3个小三角形进行重新拼装组合,得
面积为8平方厘米的正方形,根据算术平方根的意义我们可以得出它的边长是厘米.
⒉探索活动二: 那么到底有多大啊?
⑴问题1:是有理数吗?
如:用刻度尺测量面积为8平方厘米的正方形的边长,可知约等于
⑵问题2:是2与3之间的一个分数吗?(也就是2与3之间的分数的平方会等于吗?)
通过计算器夹逼的方法进行充分的探索,在探索中体会“无限”的过程。] 我们可以得到:=2.82847…
⒊抽象归纳:
既不是分数(从而它不是有限小数),也不是无限循环小数.这种小数叫做无限不循环小数.
我们把 叫做无理数(irrational number)
⒋交流质疑:⑴是不是一个无理数?⑵开方开不尽的数是不是都属于无限不循环小数即无理数?
三、应用迁移
(一)典例精析
例1 把下列各数填入相应的集合内:
,
有理数集合{ }
无理数集合{ }
例2 用计算器求下列各式的值:(用四舍五入到小数点后第三位)
⑴ ⑵ ⑶
(二)变式运用
⒈的整数部分为 ,小数部分为 .
⒉已知的小数部分为,的小数部分为,求的值.
(三)综合运用
-a没有平方根吗?
四、归纳小结
怎样的数是无理数?请举例说明.你还记得有理数的分类吗?你能区分有理数和无理数吗?
五、巩固提升
★★1.下列各式是否有意义,为什么?
⑴ ⑵ ⑶
★★★2.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为3∶2.不知能否裁出来,正在发愁.小明见了说“别发愁,一定能用一块面积大的裁出一块面积小的纸片”,你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?
六、课后练习
七、教学反思
本节课通过实际问题引入无理数,让学生感知无理数是客观存在的,激发学生的求知欲望.再让学生用计算器求无理数的近似值,认识到无理数包括无限不循环小数.这样突出学生的主体地位,整个课堂以学生参与为主线,老师起主导作用.
初中数学3.3 实数第1课时教案设计: 这是一份初中数学3.3 实数第1课时教案设计,共3页。教案主要包含了教学重点,教学难点等内容,欢迎下载使用。
初中数学湘教版八年级上册3.1 平方根第1课时教案设计: 这是一份初中数学湘教版八年级上册3.1 平方根第1课时教案设计,共4页。教案主要包含了知识与能力,过程与方法,情感态度价值观,教学重点,教学难点等内容,欢迎下载使用。
初中湘教版3.1 平方根教学设计: 这是一份初中湘教版3.1 平方根教学设计,共3页。