![21.2.1 配方法(第2课时) 课件+教案+练习01](http://www.enxinlong.com/img-preview/2/3/13423354/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习02](http://www.enxinlong.com/img-preview/2/3/13423354/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习03](http://www.enxinlong.com/img-preview/2/3/13423354/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习04](http://www.enxinlong.com/img-preview/2/3/13423354/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习05](http://www.enxinlong.com/img-preview/2/3/13423354/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习06](http://www.enxinlong.com/img-preview/2/3/13423354/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习07](http://www.enxinlong.com/img-preview/2/3/13423354/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习08](http://www.enxinlong.com/img-preview/2/3/13423354/0/8.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习01](http://www.enxinlong.com/img-preview/2/3/13423354/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习02](http://www.enxinlong.com/img-preview/2/3/13423354/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习03](http://www.enxinlong.com/img-preview/2/3/13423354/1/3.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习01](http://www.enxinlong.com/img-preview/2/3/13423354/2/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![21.2.1 配方法(第2课时) 课件+教案+练习02](http://www.enxinlong.com/img-preview/2/3/13423354/2/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学第二十一章 一元二次方程21.2 解一元二次方程21.2.1 配方法一等奖课件ppt
展开21.2 解一元二次方程21.2.1 配方法(第2课时)化为一般式,得 x2+6x-16=0 要使一块矩形场地的长比宽多6米,并且面积为16平方米,求场地的长和宽应各是多少?x(x+6)=16导入新知解:设场地宽为xm,则长为( x+ 6)m,根据长方形面积为16m2,列方程得2.探索直接开平方法和配方法之间的区别和联系. 素养目标1.了解配方的概念,掌握用配方法解一元二次方程及解决有关问题. (1) 9x2=1 ;(2) (x-2)2=2.2.下列方程能用直接开平方法来解吗?1.用直接开平方法解下列方程:(1) x2+6x+9 =5;(2)x2+6x+4=0.把两题转化成(x+n)2=p(p≥0)的形式,再利用开平方来解.探究新知 你还记得吗?填一填下列完全平方公式.(1) a2+2ab+b2=( )2;(2) a2-2ab+b2=( )2.a+ba-b探究新知填一填(根据 )56你发现了什么规律?二次项系数都为1.探究新知【思考】 怎样解方程: x2+6x+4=0(1)(1)方程(1)怎样变成(x+n)2=p的形式呢?解:x2+6x+4=0 x2+6x=-4移项 x2+6x+9=-4+9两边都加上9二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.探究新知(2)为什么在方程x2+6x=-4的两边加上9?加其他数行吗? 提示:不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x2+2bx+b2的形式.探究新知 像上面那样,通过配成完全平方形式来解一元二次方程的方法叫做配方法. 配方是为了降次 ,把一个一元二次方程转化成两个一元一次方程来解.配方法的定义探究新知例1 解方程:解:(1)移项,得x2-8x=-1,配方,得x2-8x+42=-1+42 ,( x-4)2=15由此可得探究新知解二次项系数是1的一元二次方程解方程x2+8x-4=0解:移项,得 x2+8x=4 配方,得 x2+8x+4²=4+4², 整理,得 (x+4)2=20, 由此可得 x+4= , x1= , x2= .巩固练习配方,得由此可得二次项系数化为1,得解:移项,得2x2-3x=-1,例2 解方程探究新知(1)配方,得 因为实数的平方不会是负数,所以x取任何实数时,上式都不成立,所以原方程无实数根.解:移项,得二次项系数化为1,得为什么方程两边都加12?即探究新知(2)思考1:用配方法解一元二次方程时,移项时要注意些什么?思考2:用配方法解一元二次方程的一般步骤.移项时需注意改变符号.①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.探究新知一般地,如果一个一元二次方程通过配方转化成 (x+n)2=p.①当p>0时,则 ,方程的两个根为②当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为 x1=x2=-n.③当p<0时,则方程(x+n)2=p无实数根.探究新知解下列方程:巩固练习解: 移项,得配方,得由此可得二次项系数化为1,得整理,得3x2+6x=4x2+2x=x2+2x+12= +12(x+1)2=即 x+1=± .x1= , x2= .(1)巩固练习解: 移项,得配方,得由此可得二次项系数化为1,得整理,得x1= , x2= 4x2-6x=3x2- x=(2)巩固练习解:移项,得∴ x取任何实数,上式都不成立,即原方程无实数根.∵ 对任何实数x都有 ( x+1 )2 ≥ 0,配方,得 x2+2x+1=-2+1.整理,得x2+2x=-2.(x+1)2=-1.(3)巩固练习解:去括号,得 x2+4x=8x+12 移项,得 配方,得 由此可得 x-2=±4整理,得x2-4x=12(x-2)2=16x1=6 , x2=-2x2-4x+2²=12+2²因此(4)例3 试用配方法说明:不论k取何实数,多项式 k2-4k+5 的值必定大于零.解:k2-4k+5=k2-4k+4+1=(k-2)2+1因为(k-2)2≥0,所以(k-2)2+1≥1.所以k2-4k+5的值必定大于零.探究新知方法点拨:证明代数式的值恒为正数,需要利用配方法将代数式化成几个非负数的和,利用非负数的性质说明代数式的值恒为正数.例4 若a,b,c为△ABC的三边长,且 试判断△ABC的形状.解:对原式配方,得 根据非负数的性质得 根据勾股定理的逆定理可知,△ABC为直角三角形. 探究新知由此可得 即 巩固练习方程2x2 - 3m - x +m2 +2=0有一个根为x = 0,则m的值为( ) A. 1 B.1 C.1或2 D.1或-2应用配方法求最大值或最小值.(1)求 2x2 - 4x+5的最小值 (2) -3x2 + 12x -16的最大值.C解:原式 = 2(x - 1)2 +3 因为 2(x - 1)2 ≥0,所以 2(x - 1)2 +3 ≥3因此当x =1时,原式有最小值3.解:原式= -3(x - 2)2 - 4 因为 (x - 2)2 ≥0,即-3(x - 2)2 ≤0,所以 -3(x - 2)2 -4≤-4因此当x =2时,原式有最大值-4.对于一个关于x的二次多项式通过配方成a(x+m)2+n的形式后,由于x无论取任何实数都有(x+m)2≥0,n为常数,当a>0时,可知其有最小值;当a<0时,可知其有最大值.2.完全平方式中的配方如:已知x2-2mx+16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=±4.3.利用配方构成非负数和的形式对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是通过配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,即a=0,b=2.配方法的应用探究新知1. 一元二次方程y2﹣y﹣ =0配方后可化为( ) A. (y+ )2=1 B. (y- )2=1 C. (y+ )2= D. (y- )2=B链接中考课堂检测1. 解方程:4x2-8x-4=0. 解:移项,得4x2-8x=4, 二次项系数化为1,得x2-2x=1, 配方,得 x2-2x+1=1+1,整理,得 (x-1)2=2,课堂检测2.利用配方法证明:不论x取何值,代数式-x2-x-1的值总是负数,并求出它的最大值. 课堂检测3.若 ,求(xy)z 的值.解:对原式配方,得 由非负数的性质可知 4.如图,在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少? 解:设道路的宽为xm, 根据题意得(35-x)(26-x)=850,整理得x2-61x+60=0.解得x1=60(不合题意,舍去), x2=1.答:道路的宽为1m.课堂检测已知a,b,c为△ABC的三边长,且 试判断△ABC的形状.解:对原式配方,得 由代数式的性质可知 所以,△ABC为等边三角形. 课堂检测配方法定义通过配成完全平方形式解一元二次方程的方法.步骤特别提醒:在使用配方法解方程之前先把方程化为x2+px+q=0的形式.应用求代数式的最值或证明.课堂小结课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习
初中数学人教版九年级上册21.2.1 配方法教案配套ppt课件: 这是一份初中数学人教版九年级上册21.2.1 配方法教案配套ppt课件,共15页。PPT课件主要包含了知识回顾,合作探究,解方程,练一练,怎样解方程,降次转化,大胆试一试,共同点,填一填口答,变形为等内容,欢迎下载使用。
初中数学21.2.1 配方法课前预习课件ppt: 这是一份初中数学21.2.1 配方法课前预习课件ppt,共12页。PPT课件主要包含了非负数,完全平方,x+√324等内容,欢迎下载使用。
人教版九年级上册21.2.1 配方法教学ppt课件: 这是一份人教版九年级上册21.2.1 配方法教学ppt课件,共12页。