新高考高考数学一轮复习巩固练习5.1第42练《平面向量的概念及线性运算》(2份打包,解析版+原卷版)
展开考点一 平面向量的概念
1.设非零向量a,b满足|a+b|=|a-b|,则( )
A.a⊥b B.|a|=|b|
C.a∥b D.|a|>|b|
2.设a是非零向量,λ是非零实数,下列结论中正确的是( )
A.a与λa的方向相反
B.a与λ2a的方向相同
C.|-λa|≥|a|
D.|-λa|≥|λ|a
3.如图所示,在正六边形ABCDEF中,eq \(BA,\s\up6(→))+eq \(CD,\s\up6(→))+eq \(EF,\s\up6(→))等于( )
A.0 B.eq \(BE,\s\up6(→))
C.eq \(AD,\s\up6(→)) D.eq \(CF,\s\up6(→))
考点二 平面向量的线性运算
4.如图,在等腰梯形ABCD中,DC=eq \f(1,2)AB,BC=CD=DA,DE⊥AC于点E,则eq \(DE,\s\up6(→))等于( )
A.eq \f(1,2)eq \(AB,\s\up6(→))-eq \f(1,2)eq \(AC,\s\up6(→))
B.eq \f(1,2)eq \(AB,\s\up6(→))+eq \f(1,2)eq \(AC,\s\up6(→))
C.eq \f(1,2)eq \(AB,\s\up6(→))-eq \f(1,4)eq \(AC,\s\up6(→))
D.eq \f(1,2)eq \(AB,\s\up6(→))+eq \f(1,4)eq \(AC,\s\up6(→))
5.如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB,AC于不同的两点M,N,若eq \(AB,\s\up6(→))=meq \(AM,\s\up6(→)),eq \(AC,\s\up6(→))=neq \(AN,\s\up6(→)),则m+n等于( )
A.1 B.eq \f(3,2) C.2 D.3
6.(多选)设点M是△ABC所在平面内一点,则下列说法正确的是( )
A.若eq \(AM,\s\up6(→))=eq \f(1,2)eq \(AB,\s\up6(→))+eq \f(1,2)eq \(AC,\s\up6(→)),则点M是边BC的中点
B.若eq \(AM,\s\up6(→))=2eq \(AB,\s\up6(→))-eq \(AC,\s\up6(→)),则点M在边BC的延长线上
C.若eq \(AM,\s\up6(→))=-eq \(BM,\s\up6(→))-eq \(CM,\s\up6(→)),则点M是△ABC的重心
D.若eq \(AM,\s\up6(→))=xeq \(AB,\s\up6(→))+yeq \(AC,\s\up6(→)),且x+y=eq \f(1,2),则△MBC的面积是△ABC面积的eq \f(1,2)
考点三 共线定理及其应用
7.已知eq \(AB,\s\up6(→))=a+5b,eq \(BC,\s\up6(→))=-3a+6b,eq \(CD,\s\up6(→))=4a-b,则( )
A.A,B,D三点共线
B.A,B,C三点共线
C.B,C,D三点共线
D.A,C,D三点共线
8.已知eq \(PA,\s\up6(→))=eq \f(2,3)eq \(PB,\s\up6(→))+teq \(PC,\s\up6(→)),若A,B,C三点共线,则eq \f(|\(AB,\s\up6(→))|,|\(AC,\s\up6(→))|)为( )
A.eq \f(2,3) B.eq \f(2,5) C.eq \f(1,2) D.2
9.(多选)设a,b是不共线的两个平面向量, 已知eq \(PQ,\s\up6(→))=a+sin α·b,其中α∈(0,2π),eq \(QR,\s\up6(→))=2a-b.若P,Q,R三点共线,则角α的值可以为( )
A.eq \f(π,6) B.eq \f(5π,6) C.eq \f(7π,6) D.eq \f(11π,6)
10.已知a,b不共线,eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,eq \(OC,\s\up6(→))=c,eq \(OD,\s\up6(→))=d,eq \(OE,\s\up6(→))=e,设t∈R,如果3a=c,2b=d,e=t(a+b),若存在实数t使C,D,E三点在一条直线上,则t=________.
11.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AB=2AD=2DC,E为BC边上一点,且eq \(BC,\s\up6(→))=eq \(3EC,\s\up6(→)),F为AE的中点,则eq \(BF,\s\up6(→))等于( )
A.eq \f(2,3)eq \(AB,\s\up6(→))-eq \f(1,3)eq \(AD,\s\up6(→)) B.eq \f(1,3)eq \(AB,\s\up6(→))-eq \f(2,3)eq \(AD,\s\up6(→))
C.-eq \f(2,3)eq \(AB,\s\up6(→))+eq \f(1,3)eq \(AD,\s\up6(→)) D.-eq \f(1,3)eq \(AB,\s\up6(→))+eq \f(2,3)eq \(AD,\s\up6(→))
12.如图,在平面四边形ABCD中,已知△ABC的面积是△ACD的面积的3倍.若存在正实数x,y使得eq \(AC,\s\up6(→))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)-3))eq \(AB,\s\up6(→))+eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,y)))eq \(AD,\s\up6(→))成立,则eq \f(3,x)+eq \f(1,y)的值为( )
A.10 B.9 C.8 D.7
13.已知D,E,F分别为△ABC的边BC,CA,AB的中点,且eq \(BC,\s\up6(→))=a,eq \(CA,\s\up6(→))=b,给出下列命题:①eq \(AD,\s\up6(→))=eq \f(1,2)a-b;②eq \(BE,\s\up6(→))=a+eq \f(1,2)b;③eq \(CF,\s\up6(→))=-eq \f(1,2)a+eq \f(1,2)b;④eq \(AD,\s\up6(→))+eq \(BE,\s\up6(→))+eq \(CF,\s\up6(→))=0.
其中正确命题的序号为________.
14.在矩形ABCD中,AB=3,AD=4,P为矩形ABCD所在平面上一点,满足PB⊥PD,则|eq \(PA,\s\up6(→))|的最大值是________,|eq \(PA,\s\up6(→))+eq \(PC,\s\up6(→))|的值是________.
(新高考)高考数学一轮复习学案+巩固提升练习5.1《平面向量的概念及线性运算》(2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习学案+巩固提升练习5.1《平面向量的概念及线性运算》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习51《平面向量的概念及线性运算》原卷版doc、新高考高考数学一轮复习讲义+巩固练习51《平面向量的概念及线性运算》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习51《平面向量的概念及线性运算》教师版doc、新高考高考数学一轮复习讲义+巩固练习51《平面向量的概念及线性运算》教师版pdf等4份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
(新高考)高考数学一轮复习学案+分层提升5.1《平面向量的概念及线性运算》(2份打包,原卷版+教师版): 这是一份(新高考)高考数学一轮复习学案+分层提升5.1《平面向量的概念及线性运算》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习51《平面向量的概念及线性运算》原卷版doc、新高考高考数学一轮复习讲义+巩固练习51《平面向量的概念及线性运算》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习51《平面向量的概念及线性运算》教师版doc、新高考高考数学一轮复习讲义+巩固练习51《平面向量的概念及线性运算》教师版pdf等4份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
新高考数学一轮复习过关训练第30课 平面向量的概念及线性运算(2份打包,原卷版+解析版): 这是一份新高考数学一轮复习过关训练第30课 平面向量的概念及线性运算(2份打包,原卷版+解析版),文件包含新高考数学一轮复习过关训练第30课平面向量的概念及线性运算原卷版doc、新高考数学一轮复习过关训练第30课平面向量的概念及线性运算解析版doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。