终身会员
搜索
    上传资料 赚现金

    2022年中考数学真题汇编:最值问题2(含解析)

    立即下载
    加入资料篮
    2022年中考数学真题汇编:最值问题2(含解析)第1页
    2022年中考数学真题汇编:最值问题2(含解析)第2页
    2022年中考数学真题汇编:最值问题2(含解析)第3页
    还剩57页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年中考数学真题汇编:最值问题2(含解析)

    展开

    这是一份2022年中考数学真题汇编:最值问题2(含解析),共60页。试卷主要包含了如图,点在抛物线C等内容,欢迎下载使用。


    2022年中考数学真题综合练习:最值问题
    1.(2022黔东南)在解决数学实际问题时,常常用到数形结合思想,比如:的几何意义是数轴上表示数的点与表示数的点的距离,的几何意义是数轴上表示数的点与表示数2的点的距离.当取得最小值时,的取值范围是( )
    A. B. 或 C. D.
    2.(2022鄂州)如图,定直线MNPQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AEBCDF,AE=4,DF=8,AD=24,当线段BC在平移过程中,AB+CD的最小值为( )

    A. 24 B. 24 C. 12 D. 12
    3.(2022齐齐哈尔)如图,二次函数的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为,函数最大值为4,结合图象给出下列结论:①;②;③;④若关于x的一元二次方程 有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有( )

    A. 2个 B. 3个 C. 4个 D. 5个
    4.(2022毕节)如图,在中,,点P为边上任意一点,连接,以,为邻边作平行四边形,连接,则长度的最小值为_________.


    5.(2022铜仁)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP//EM交MC于点P,则MN+NP的最小值为________.

    6.(2022龙东地区)如图,菱形ABCD中,对角线AC,BD相交于点O,,,AH是的平分线,于点E,点P是直线AB上的一个动点,则的最小值是________.

    7.(2022遵义)如图,在等腰直角三角形中,,点,分别为,上的动点,且,.当的值最小时,的长为__________.

    8.(2022河北)如图,点在抛物线C:上,且在C的对称轴右侧.

    (1)写出C的对称轴和y的最大值,并求a的值;
    (2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为,.平移该胶片,使所在抛物线对应的函数恰为.求点移动的最短路程.


    9.(2022河北)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.

    (1)求∠C的大小及AB的长;
    (2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:取4,取4.1)


    10.(2022河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.

    (1)求证:∠BOC+∠BAD=90°.
    (2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得.已知铁环⊙O的半经为25cm,推杆AB的长为75cm,求此时AD的长.


    11.(2022贵阳)已知二次函数y=ax2+4ax+b.

    (1)求二次函数图象的顶点坐标(用含a,b的代数式表示);
    (2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(−1,e),(−3,f)四点,判断c,d,e,f的大小,并说明理由;
    (3)点M(m,n)是二次函数图象上的一个动点,当−2≤m≤1时,n的取值范围是−1≤n≤1,求二次函数的表达式.


    12.(2022绥化)在平面直角坐标系中,已知一次函数与坐标轴分别交于,两点,且与反比例函数的图象在第一象限内交于P,K两点,连接,的面积为.

    (1)求一次函数与反比例函数的解析式;
    (2)当时,求x的取值范围;
    (3)若C为线段上的一个动点,当最小时,求的面积.


    13.(2022牡丹江、鸡西)如图,已知抛物线(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.

    (1)若抛物线过点M(﹣2,﹣2),求实数a的值;
    (2)在(1)的条件下,解答下列问题;
    ①求出△BCE的面积;
    ②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.


    14.(2022遵义)新定义:我们把抛物线(其中)与抛物线称为“关联抛物线”.例如:抛物线的“关联抛物线”为:.已知抛物线的“关联抛物线”为.
    (1)写出的解析式(用含的式子表示)及顶点坐标;
    (2)若,过轴上一点,作轴的垂线分别交抛物线,于点,.
    ①当时,求点的坐标;
    ②当时,的最大值与最小值的差为,求的值.


    15.(2022大庆)已知反比例函数和一次函数,其中一次函数图象过,两点.

    (1)求反比例函数的关系式;
    (2)如图,函数的图象分别与函数图象交于A,B两点,在y轴上是否存在点P,使得周长最小?若存在,求出周长的最小值;若不存在,请说明理由.


    16.(2022毕节)如图,在平面直角坐标系中,抛物线与x轴交于A,B两点,与y轴交于点C,顶点为,抛物线的对称轴交直线于点E.

    (1)求抛物线的表达式;
    (2)把上述抛物线沿它的对称轴向下平移,平移的距离为,在平移过程中,该抛物线与直线始终有交点,求h的最大值;
    (3)M是(1)中抛物线上一点,N是直线上一点.是否存在以点D,E,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.


    17.(2022贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.
    如图,在中,为边上的高,,点在边上,且,点是线段上任意一点,连接,将沿翻折得.

    (1)问题解决:
    如图①,当,将沿翻折后,使点与点重合,则______;
    (2)问题探究:
    如图②,当,将沿翻折后,使,求的度数,并求出此时的最小值;
    (3)拓展延伸:
    当,将沿翻折后,若,且,根据题意在备用图中画出图形,并求出的值.


    18.(2022齐齐哈尔)综合与探究
    如图,某一次函数与二次函数的图象交点为A(-1,0),B(4,5).


    (1)求抛物线的解析式;
    (2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为 ;
    (3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度最大值;
    (4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.


    19.(2022鄂州)如图1,在平面直角坐标系中,Rt△OAB的直角边OA在y轴的正半轴上,且OA=6,斜边OB=10,点P为线段AB上一动点.

    (1)请直接写出点B的坐标;
    (2)若动点P满足∠POB=45°,求此时点P的坐标;
    (3)如图2,若点E为线段OB的中点,连接PE,以PE为折痕,在平面内将△APE折叠,点A的对应点为A',当PA'⊥OB时,求此时点P的坐标;
    (4)如图3,若F为线段AO上一点,且AF=2,连接FP,将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,当OG取最小值时,请直接写出OG的最小值和此时线段FP扫过的面积.


    20.(2022江汉油田、潜江、天门、仙桃)如图,在平面直角坐标系中,已知抛物线的顶点为A,与y轴交于点C,线段轴,交该抛物线于另一点B.

    (1)求点B的坐标及直线的解析式:
    (2)当二次函数的自变量x满足时,此函数的最大值为p,最小值为q,且.求m的值:
    (3)平移抛物线,使其顶点始终在直线上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.


    21.(2022恩施州)在平面直角坐标系中,O为坐标原点,抛物线与y轴交于点.

    (1)直接写出抛物线的解析式.
    (2)如图,将抛物线向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.
    (3)直线BC与抛物线交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与相似,若存在,请求出点T的坐标;若不存在,请说明理由.
    (4)若将抛物线进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出拋物线平移的最短距离并求出此时抛物线的顶点坐标.

    2022年中考数学真题综合练习:最值问题参考答案
    1.(2022黔东南)在解决数学实际问题时,常常用到数形结合思想,比如:的几何意义是数轴上表示数的点与表示数的点的距离,的几何意义是数轴上表示数的点与表示数2的点的距离.当取得最小值时,的取值范围是( )
    A. B. 或 C. D.
    【答案】解:如图,由可得:点、、分别表示数、2、,.

    的几何意义是线段与的长度之和,
    当点在线段上时,,当点在点的左侧或点的右侧时,.
    取得最小值时,的取值范围是;
    故选B.
    2.(2022鄂州)如图,定直线MNPQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AEBCDF,AE=4,DF=8,AD=24,当线段BC在平移过程中,AB+CD的最小值为( )

    A. 24 B. 24 C. 12 D. 12
    【答案】解:如图所示,过点F作交BC于H,连接EH,
    ∵,
    ∴四边形CDFH是平行四边形,
    ∴CH=DF=8,CD=FH,
    ∴BH=4,
    ∴BH=AE=4,
    又∵,
    ∴四边形ABHE是平行四边形,
    ∴AB=HE,
    ∵,
    ∴当E、F、H三点共线时,EH+HF有最小值EF即AB+CD有最小值EF,
    延长AE交PQ于G,过点E作ET⊥PQ于T,过点A作AL⊥PQ于L,过点D作DK⊥PQ于K,
    ∵,
    ∴四边形BEGC是平行四边形,∠EGT=∠BCQ=60°,
    ∴EG=BC=12,
    ∴,
    同理可求得,,
    ∴,
    ∵AL⊥PQ,DK⊥PQ,
    ∴,
    ∴△ALO∽△DKO,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故选C.

    3.(2022齐齐哈尔)如图,二次函数的图象与y轴的交点在(0,1)与(0,2)之间,对称轴为,函数最大值为4,结合图象给出下列结论:①;②;③;④若关于x的一元二次方程 有两个不相等的实数根,则m>4;⑤当x<0时,y随x的增大而减小.其中正确的结论有( )

    A. 2个 B. 3个 C. 4个 D. 5个
    【答案】解:∵二次函数的对称轴为,

    ∴故①正确;
    ∵函数图象开口向下,对称轴为,函数最大值为4,
    ∴函数的顶点坐标为(-1,4)
    当x=-1时,

    ∴,
    ∵二次函数的图象与y轴的交点在(0,1)与(0,2)之间,
    ∴<<2
    ∴<4+a<2
    ∴,故②正确;
    ∵抛物线与x轴有两个交点,

    ∴,故③正确;
    ∵抛物线的顶点坐标为(-1,4)且方程有两个不相等的实数根,

    ∴,故④错误;
    由图象可得,当x>-1时,y随x的增大而减小,故⑤错误.
    所以,正确的结论是①②③,共3个,
    故选:B
    4.(2022毕节)如图,在中,,点P为边上任意一点,连接,以,为邻边作平行四边形,连接,则长度的最小值为_________.

    【答案】解:∵,
    ∴,
    ∵四边形APCQ是平行四边形,
    ∴PO=QO,CO=AO,
    ∵PQ最短也就是PO最短,
    ∴过O作BC的垂线,

    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴则PQ的最小值为,
    故答案为:.
    5.(2022铜仁)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP//EM交MC于点P,则MN+NP的最小值为________.

    【答案解:作点P关于CE的对称点P′,

    由折叠的性质知CE是∠DCM的平分线,
    ∴点P′在CD上,
    过点M作MF⊥CD于F,交CE于点G,
    ∵MN+NP=MN+NP′≤MF,
    ∴MN+NP的最小值为MF的长,
    连接DG,DM,
    由折叠的性质知CE为线段 DM的垂直平分线,
    ∵AD=CD=2,DE=1,
    ∴CE==,
    ∵CE×DO=CD×DE,
    ∴DO=,
    ∴EO=,
    ∵MF⊥CD,∠EDC=90°,
    ∴DE∥MF,
    ∴∠EDO=∠GMO,
    ∵CE为线段DM的垂直平分线,
    ∴DO=OM,∠DOE=∠MOG=90°,
    ∴△DOE≌△MOG,
    ∴DE=GM,
    ∴四边形DEMG为平行四边形,
    ∵∠MOG=90°,
    ∴四边形DEMG为菱形,
    ∴EG=2OE=,GM= DE=1,
    ∴CG=,
    ∵DE∥MF,即DE∥GF,
    ∴△CFG∽△CDE,
    ∴,即,
    ∴FG=,
    ∴MF=1+=,
    ∴MN+NP的最小值为.
    故答案为:.
    6.(2022龙东地区)如图,菱形ABCD中,对角线AC,BD相交于点O,,,AH是的平分线,于点E,点P是直线AB上的一个动点,则的最小值是________.

    【答案】解:如图,作点O关于AB的对称点F,连接OF交AB于G,连接PE交直线AB于P,连接PO,则PO=PF,此时,PO+PE最小,最小值=EF,

    ∵菱形ABCD,
    ∴AC⊥BD,OA=OC,O=OD,AD=AB=3,
    ∵∠BAD=60°,
    ∴△ABD是等边三角形,
    ∴BD=AB=3,∠BAO=30°,
    ∴OB=,
    ∴OA=,
    ∴点O关于AB的对称点F,
    ∴OF⊥AB,OF=2OG=OA=,
    ∴∠AOG=60°,
    ∵CE⊥AH于E,OA=OC,
    ∴OE=OC=OA=,
    ∵AH平分∠BAC,
    ∴∠CAE=15°,
    ∴∠AEC=∠CAE=15°,
    ∴∠DOE=∠AEC+∠CAE=30°,
    ∴∠DOE+∠AOG=30°+60°=90°,
    ∴∠FOE=90°,
    ∴由勾股定理,得EF=,
    ∴PO+PE最小值=.
    故答案为:.
    7.(2022遵义)如图,在等腰直角三角形中,,点,分别为,上的动点,且,.当的值最小时,的长为__________.

    【答案】如图,过点作,且,连接,如图1所示,

    又,



    当三点共线时,取得最小值,
    此时如图2所示,
    在等腰直角三角形中,,








    设,



    ,,


    即取得最小值为,
    故答案为:.

    图1 图2
    8.(2022河北)如图,点在抛物线C:上,且在C的对称轴右侧.

    (1)写出C的对称轴和y的最大值,并求a的值;
    (2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为,.平移该胶片,使所在抛物线对应的函数恰为.求点移动的最短路程.
    【答案】
    (1),
    ∴对称轴为直线,
    ∵,
    ∴抛物线开口向下,有最大值,即的最大值为4,
    把代入中得:

    解得:或,
    ∵点在C的对称轴右侧,
    ∴;
    (2)∵,
    ∴是由向左平移3个单位,再向下平移4个单位得到,
    平移距离为,
    ∴移动的最短路程为5.
    9.(2022河北)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.

    (1)求∠C的大小及AB的长;
    (2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:取4,取4.1)
    【答案】
    (1)解:∵水面截线



    在中,,,

    解得.
    (2)过点作,交MN于D点,交半圆于H点,连接OM,过点M作MG⊥OB于G,如图所示:

    水面截线,,
    ,,
    为最大水深,


    ,且,

    ,即,即,
    在中,,,
    ,即,
    解得,

    最大水深约为米.
    10.(2022河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.

    (1)求证:∠BOC+∠BAD=90°.
    (2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得.已知铁环⊙O的半经为25cm,推杆AB的长为75cm,求此时AD的长.
    【答案】
    (1)证明:⊙O与水平地面相切于点C,



    AB与⊙O相切于点B,


    过点作,





    即∠BOC+∠BAD=90°.
    (2)如图,过点作的平行线,交于点,交于点,

    ,则四边形是矩形,
    , ,

    在中,,,
    (cm),
    在中,,cm,
    (cm),
    (cm),
    (cm),
    cm,
    (cm).
    11.(2022贵阳)已知二次函数y=ax2+4ax+b.

    (1)求二次函数图象的顶点坐标(用含a,b的代数式表示);
    (2)在平面直角坐标系中,若二次函数的图象与x轴交于A,B两点,AB=6,且图象过(1,c),(3,d),(−1,e),(−3,f)四点,判断c,d,e,f的大小,并说明理由;
    (3)点M(m,n)是二次函数图象上的一个动点,当−2≤m≤1时,n的取值范围是−1≤n≤1,求二次函数的表达式.
    【答案】
    (1)解:∵y=ax2+4ax+b=a(x2+4x+4-4)+b= a(x+2)2+b-4a,
    ∴二次函数图象的顶点坐标为(-2,b-4a);
    (2)解:由(1)知二次函数的图象的对称轴为直线x=-2,
    又∵二次函数的图象与x轴交于A,B两点,AB=6,
    ∴A,B两点的坐标分别为(-5,0),(1,0),
    当a<0时,画出草图如图:

    ∴e=f> c>d;
    当a>0时,画出草图如图:

    ∴e=f< c (3)解:∵点M(m,n)是二次函数图象上的一个动点,
    当a<0时,
    根据题意:当m=-2时,函数有最大值为1,当m=1时,函数值为-1,
    即,解得:,
    ∴二次函数的表达式为y=x2x+.
    当a>0时,
    根据题意:当m=-2时,函数有最小值为-1,当m=1时,函数值为1,
    即,解得:,
    ∴二次函数的表达式为y=x2x-.
    综上,二次函数的表达式为y=x2x-或y=x2x+.
    12.(2022绥化)在平面直角坐标系中,已知一次函数与坐标轴分别交于,两点,且与反比例函数的图象在第一象限内交于P,K两点,连接,的面积为.

    (1)求一次函数与反比例函数的解析式;
    (2)当时,求x的取值范围;
    (3)若C为线段上的一个动点,当最小时,求的面积.
    【答案】
    (1)解:∵一次函数与坐标轴分别交于,两点,
    ∴把,代入得,
    ,解得,,
    ∴一次函数解析式为
    过点P作轴于点H,






    ∴,


    ∵在双曲线上,


    (2)解:联立方程组得,
    解得, ,

    根据函数图象可得,反比例函数图象直线上方时,有或,
    ∴当时,求x的取值范围为或,
    (3)解:作点K关于x轴的对称点,连接交x轴于点M,则(1,-2),OM=1,
    连接交x轴于点C,连接KC,则PC+KC的值最小,
    设直线的解析式为
    把代入得,
    解得,
    ∴直线的解析式为
    当时,,解得,,









    13.(2022牡丹江、鸡西)如图,已知抛物线(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.

    (1)若抛物线过点M(﹣2,﹣2),求实数a的值;
    (2)在(1)的条件下,解答下列问题;
    ①求出△BCE的面积;
    ②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.
    【答案】解:(1)将M(﹣2,﹣2)代入抛物线解析式得:,
    解得:a=4.
    (2)①由(1)抛物线解析式,
    当y=0时,得:,解得:.
    ∵点B在点C的左侧,
    ∴B(﹣4,0),C(2,0).
    当x=0时,得:y=﹣2,
    ∴E(0,﹣2).
    ∴S△BCE=×6×2=6.
    ②∵,
    ∴抛物线对称轴为直线x=﹣1.
    连接BE,与对称轴交于点H,即为所求.

    设直线BE解析式为y=kx+b,
    将B(﹣4,0)与E(0,﹣2)代入得:
    ,解得:.
    ∴直线BE解析式.
    将x=﹣1代入得:,
    ∴H(﹣1,).
    14.(2022遵义)新定义:我们把抛物线(其中)与抛物线称为“关联抛物线”.例如:抛物线的“关联抛物线”为:.已知抛物线的“关联抛物线”为.
    (1)写出的解析式(用含的式子表示)及顶点坐标;
    (2)若,过轴上一点,作轴的垂线分别交抛物线,于点,.
    ①当时,求点的坐标;
    ②当时,的最大值与最小值的差为,求的值.
    【答案】
    (1)解:抛物线的“关联抛物线”为,
    根据题意可得,的解析式

    顶点为
    (2)解:①设,则,






    当时,
    解得,
    当时,方程无解

    ②的解析式

    顶点为,对称轴为


    当时,即时,
    函数的最大值为,最小值为
    的最大值与最小值的差为



    解得(,舍去)

    当时,且即时,
    函数的最大值为,最小值为
    的最大值与最小值的差为



    解得(,舍去)

    当时,即时,抛物线开向上,对称轴右侧随的增大而增大,
    函数的最大值为,最小值为
    的最大值与最小值的差为




    解得(舍去)
    综上所述,或.
    15.(2022大庆)已知反比例函数和一次函数,其中一次函数图象过,两点.

    (1)求反比例函数的关系式;
    (2)如图,函数的图象分别与函数图象交于A,B两点,在y轴上是否存在点P,使得周长最小?若存在,求出周长的最小值;若不存在,请说明理由.
    【答案】
    (1)解:把代入,得

    解得,,
    所以反比例函数解析式是;
    (2)存在点P使△ABP周长最小,理由:
    解和得,
    和,

    和,

    作点关于轴的对称点,连接,交轴于点,当点、、在一条直线上时,线段 的长度最短,所以存在点P使△ABP周长最小,

    △ABP的周长= ,



    16.(2022毕节)如图,在平面直角坐标系中,抛物线与x轴交于A,B两点,与y轴交于点C,顶点为,抛物线的对称轴交直线于点E.

    (1)求抛物线的表达式;
    (2)把上述抛物线沿它的对称轴向下平移,平移的距离为,在平移过程中,该抛物线与直线始终有交点,求h的最大值;
    (3)M是(1)中抛物线上一点,N是直线上一点.是否存在以点D,E,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.
    【答案】
    (1)解:由可知,
    解得:,

    (2)分别令中,得,,;
    设BC的表达式为:,
    将,代入得,
    解得:;
    ∴BC的表达式为:;
    抛物线平移后的表达式为:,
    根据题意得,,即,
    ∵该抛物线与直线始终有交点,
    ∴,
    ∴,
    ∴h的最大值为;
    (3)存在,理由如下:
    将代入中得,
    ∵四边形DEMN是平行四边形,

    设,
    当时,解得:(舍去),

    当时,解得:,
    ∴或,
    综上,点N的坐标为:或或.
    17.(2022贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.
    如图,在中,为边上的高,,点在边上,且,点是线段上任意一点,连接,将沿翻折得.

    (1)问题解决:
    如图①,当,将沿翻折后,使点与点重合,则______;
    (2)问题探究:
    如图②,当,将沿翻折后,使,求的度数,并求出此时的最小值;
    (3)拓展延伸:
    当,将沿翻折后,若,且,根据题意在备用图中画出图形,并求出的值.
    【答案】
    (1),
    是等边三角形,

    四边形平行四边形,


    为边上的高,

    (2),,
    是等腰直角三角形,







    ,是等腰直角三角形,为底边上的高,则
    点在边上,
    当时,取得最小值,最小值为;
    (3)如图,连接,


    ,则,
    设, 则,,
    折叠,










    在中,,

    延长交于点,如图,







    在中,,


    18.(2022齐齐哈尔)综合与探究
    如图,某一次函数与二次函数的图象交点为A(-1,0),B(4,5).


    (1)求抛物线的解析式;
    (2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为 ;
    (3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度最大值;
    (4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.
    【答案】
    (1)解:将A(-1,0),B(4,5)代入得, ,
    解这个方程组得,
    抛物线的解析式为:;
    (2)解:如图,设直线AB的解析式为:,
    把点 A(-1,0),B(4,5)代入,
    得,
    解得 ,
    直线AB的解析式为: ,
    由(1)知抛物线的对称轴为,
    点C为抛物线对称轴上一动点,,
    当点C在AB上时,最小,
    把x=1代入,得y=2,
    点C的坐标为(1,2);

    (3)解:如图,由(2)知 直线AB的解析式为y=x+1
    设,则,
    则,
    当时,DE有最大值为,

    (4)解:如图,直线AB的解析式为:y=x+1,
    直线与y轴的交点为D(0,1),


    若以点C,M,F,N为顶点的四边形是正方形,分情况讨论:
    ①过点C作轴于点,则为等腰直角三角形,过点C作 ,则四边形 为正方形,
    依题意,知D与F重合,点 的坐标为(1,1);


    ②以为中心分别作点F,点C点的对称点 ,连接,则四边形是正方形,则点的坐标为(-1,2);


    ③延长到使,作于点,则四边形是正方形,则的坐标为(1,4);


    ④取的中点,的中点,则为正方形,则的坐标为,


    综上所述,点N的坐标为:
    19.(2022鄂州)如图1,在平面直角坐标系中,Rt△OAB的直角边OA在y轴的正半轴上,且OA=6,斜边OB=10,点P为线段AB上一动点.

    (1)请直接写出点B的坐标;
    (2)若动点P满足∠POB=45°,求此时点P的坐标;
    (3)如图2,若点E为线段OB的中点,连接PE,以PE为折痕,在平面内将△APE折叠,点A的对应点为A',当PA'⊥OB时,求此时点P的坐标;
    (4)如图3,若F为线段AO上一点,且AF=2,连接FP,将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,当OG取最小值时,请直接写出OG的最小值和此时线段FP扫过的面积.
    【答案】
    (1)解:在Rt△OAB中,,
    ∴点B的坐标为(8,6);
    (2)解:连接OP,过点P作PQ⊥OB于点Q,如图,


    ∵∠POB=45°,
    ∴∠OPQ=45°,
    ∴∠POB=∠OPQ,
    ∴PQ=OQ,
    设PQ=OQ=x,则BQ=10-x,
    在Rt△OAB中,,
    在Rt△BPQ中,,
    解得,
    ∴,
    在Rt△POQ中,,
    在Rt△AOP中,,
    ∴点P的坐标为(,6);
    (3)解:令PA'交OB于点D,如图,

    ∵点E为线段OB的中点,
    ∴,,
    ∵,
    设,则,
    ∴,
    ∴,
    由折叠的性质,可得,,
    ∴,
    在Rt△中,,即,
    解得,
    ∵,即,
    ∴,
    ∴,
    ∴,
    ∴点P的坐标为(,6);
    (4)解:以点F为圆心,OF的长为半径画圆,与AB的交点即为点P,再将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,此时OG最小,如图,


    由题可知,,
    在中,,
    ∴,
    ∵,
    ∴,
    ∴是等边三角形,
    ∴,
    ∴OG的最小值为4,
    ∴线段FP扫过的面积=.
    20.(2022江汉油田、潜江、天门、仙桃)如图,在平面直角坐标系中,已知抛物线的顶点为A,与y轴交于点C,线段轴,交该抛物线于另一点B.

    (1)求点B的坐标及直线的解析式:
    (2)当二次函数的自变量x满足时,此函数的最大值为p,最小值为q,且.求m的值:
    (3)平移抛物线,使其顶点始终在直线上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.
    【答案】
    (1)解:,
    ∴顶点坐标A(1,-4),对称轴x=1,
    当x=0时y=-3,即C(0,-3),
    点B、C关于对称轴x=1对称,则B(2,-3),
    设直线AC:y=kx+b,由A(1,-4),C(0,-3),可得
    ,解得:
    ∴直线AC为:y=-x-3;
    (2)解:①当m+2≤1时,即m≤-1时,
    x=m时取最大值,x=m+2时取最小值,
    ∴,
    解得:,不符合题意;
    ②当m+2>1且m<1,1-m>m+2-1时,即-1<m<0时,
    x=m时取最大值,x=1时取最小值,
    ∴,
    解得:m=,或m=(舍去),
    ③当m+2>1且m<1,1-m<m+2-1时,即0<m<1时,
    x=m+2时取最大值,x=1时取最小值,
    ∴,
    解得:m=,m=(舍去),
    ④当m≥1时,
    x=m+2时取最大值,x=m时取最小值,
    ∴,
    解得:,不符合题意;
    m=0时,二次函数在0≤x≤2上最大值-3,最小值-4,-3-(-4)=1不符合题意;
    综上所述:m=或m=;
    (3)解:由题意作图如下,过点A作直线AE⊥BC于E,作直线AF⊥y轴于F,


    由A(1,-4)、B(2,-3)可得
    直线AB解析式为:y=x-5,
    ∵C(0,-3),
    ∴F(0,-4),E(1,-3),
    ∵AF=1,AE=1,CF=1,CE=1,∠AEC=90°,
    ∴四边形AECF是正方形,
    ∴∠CAE=∠CAF=45°,
    根据对顶角相等,可得当点A沿直线AC平移m长度时,横坐标平移m•cos45°,纵坐标平移m•cos45°,
    即点A沿直线AC平移时,横纵坐标平移距离相等,
    设抛物线向左平移m单位后,与直线AB只有1个交点,则


    令△=0,解得:m=,
    ∴n=1-=,
    由图象可得当抛物线由点A向右平移至左半部分过点B时,与射线BA只有一个交点,
    设抛物线向右平移m单位后,左半部分过点B,则
    B(2,-3)在抛物线上,

    解得:m=0(舍去)或m=3,
    ∴1<n≤4,
    综上所述n=或1<n≤4;
    21.(2022恩施州)在平面直角坐标系中,O为坐标原点,抛物线与y轴交于点.

    (1)直接写出抛物线的解析式.
    (2)如图,将抛物线向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.
    (3)直线BC与抛物线交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与相似,若存在,请求出点T的坐标;若不存在,请说明理由.
    (4)若将抛物线进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出拋物线平移的最短距离并求出此时抛物线的顶点坐标.
    【答案】
    (1)解:∵抛物线与y轴交于点

    抛物线解析式为
    (2)以B、C、Q三点为顶点的三角形是直角三角形,理由如下:
    的顶点坐标为
    依题意得,
    平移后的抛物线解析式为
    令,解


    令,则,即


    以B、C、Q三点为顶点的三角形是直角三角形
    (3)存在,或,理由如下,
    ,,

    是等腰直角三角形
    设直线的解析式为,
    则,
    解得,
    直线的解析式为,
    联立
    解得,

    ,,是等腰直角三角形

    设直线的解析式为,


    直线的解析式为
    当时,

    设的解析式为,由NT过点

    解得
    的解析式为,

    解得






    ②当时,则

    解得


    综上所述,或
    (4)如图,作,交轴于点,过点作于点,则是等腰直角三角形,作于

    直线的解析式为
    设与平行的且与只有一个公共点的直线解析式为

    整理得:

    解得
    直线的解析式为


    即拋物线平移的最短距离为,方向为方向


    ∴把点P先向右平移EF的长度,再向下平移FC的长度即得到平移后的坐标
    平移后的顶点坐标为,即



    相关试卷

    中考数学压轴题专题复习——25几何最值问题:

    这是一份中考数学压轴题专题复习——25几何最值问题,共8页。

    中考数学二轮复习培优专题43 几何中的最值问题之和长度有关的最值之函数法求最值 (含解析):

    这是一份中考数学二轮复习培优专题43 几何中的最值问题之和长度有关的最值之函数法求最值 (含解析),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    中考数学二轮复习培优专题42 几何中的最值问题之和长度有关的最值之多线段的最值 (含解析):

    这是一份中考数学二轮复习培优专题42 几何中的最值问题之和长度有关的最值之多线段的最值 (含解析),共31页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2022年中考数学真题汇编:最值问题2(含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map