还剩56页未读,
继续阅读
所属成套资源:2022年中考数学真题分类汇编
成套系列资料,整套一键下载
- 2022年中考数学真题汇编:锐角三角函数(含解析) 试卷 23 次下载
- 2022年中考数学真题汇编:平行四边形(含解析) 试卷 23 次下载
- 2022年中考数学真题汇编:全等三角形2(含解析) 试卷 23 次下载
- 2022年中考数学真题汇编:三角形(含解析) 试卷 23 次下载
- 2022年中考数学真题分类汇编:图形的旋转(含答案) 试卷 20 次下载
2022年中考数学真题汇编:勾股定理(含解析)
展开这是一份2022年中考数学真题汇编:勾股定理(含解析),共59页。
2022年中考数学真题汇编:勾股定理
1.(2022大庆)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足.点Q为线段的中点,则点Q运动路径的长为( )
A. B. C. D.
2.(2022河北)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:,乙答:d=1.6,丙答:,则正确的是( )
A. 只有甲答的对 B. 甲、丙答案合在一起才完整
C. 甲、乙答案合在一起才完整 D. 三人答案合在一起才完整
3.(2022大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是( )
A. B. C. D.
4.(2022黔东南)如图,、分别与相切于点、,连接并延长与交于点、,若,,则的值为( )
A. B. C. D.
5.(2022龙东地区)如图,中,,AD平分与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若的面积是24,,则PE的长是( )
A. 2.5 B. 2 C. 3.5 D. 3
6.(2022遵义)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形.若,,则点到的距离为( )
A. B. C. 1 D. 2
7.(2022牡丹江、鸡西)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )
A. (600-250)米 B. (600-250)米
C. (350+350)米 D. 500米
8.(2022牡丹江、鸡西)已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为________
9.(2022牡丹江、鸡西)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=_______.
10.(2022齐齐哈尔)已知圆锥的母线长为高为则该圆锥侧面展开图的圆心角是________________________.
11.(2022齐齐哈尔)在△ABC中,,,,则______________.
12.(2022贵阳)如图,在四边形中,对角线,相交于点,,.若,则的面积是_______,_______度.
13.(2022龙东地区)如图,在中,AB是的弦,的半径为3cm,C为上一点,,则AB的长为________cm.
14.(2022黔东南)如图,折叠边长为4cm的正方形纸片,折痕是,点落在点处,分别延长、交于点、,若点是边的中点,则______cm.
15.(2022龙东地区)如图,菱形ABCD中,对角线AC,BD相交于点O,,,AH是的平分线,于点E,点P是直线AB上的一个动点,则的最小值是________.
16.(2022河南)如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.
17.(2022铜仁)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP//EM交MC于点P,则MN+NP的最小值为________.
18.(2022遵义)如图,在等腰直角三角形中,,点,分别为,上的动点,且,.当的值最小时,的长为__________.
19.(2022哈尔滨)如图,菱形的对角线相交于点O,点E在上,连接,点F为的中点,连接,若,,,则线段的长为___________.
20.(2022大庆)如图,正方形中,点E,F分别是边上的两个动点,且正方形的周长是周长的2倍,连接分别与对角线交于点M,N.给出如下几个结论:①若,则;②;③若,则;④若,则.其中正确结论的序号为____________.
21.(2022河北)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点C,D的连线交于点E,则
(1)AB与CD是否垂直?______(填“是”或“否”);
(2)AE=______.
22.(2022哈尔滨)如图,方格纸中每个小正方形的边长均为1,的顶点和线段的端点均在小正方形的顶点上.
(1)在方格纸中面出,使与关于直线对称(点D在小正方形的顶点上);
(2)在方格纸中画出以线段为一边的平行四边形(点G,点H均在小正方形的顶点上),且平行四边形的面积为4.连接,请直接写出线段的长.
23.(2022龙东地区)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点坐标分别为,,.
(1)将先向左平移6个单位,再向上平移4个单位,得到,画出两次平移后的,并写出点的坐标;
(2)画出绕点顺时针旋转90°后得到,并写出点的坐标;
(3)在(2)的条件下,求点旋转到点的过程中所经过的路径长(结果保留).
24.(2022贵阳)如图,在正方形中,为上一点,连接,的垂直平分线交于点,交于点,垂足为,点在上,且.
(1)求证:;
(2)若,,求的长.
25.(2022铜仁)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.
(1)求证:AB=CB;
(2)若AB=18,sinA=,求EF长.
26.(2022遵义)将正方形和菱形按照如图所示摆放,顶点与顶点重合,菱形的对角线经过点,点,分别在,上.
(1)求证:;
(2)若,求的长.
27.(2022大庆)如图,已知是外接圆的直径,.点D为外的一点,.点E为中点,弦过点E..连接.
(1)求证:是的切线;
(2)求证:;
(3)当时,求弦的长.
28.(2022黔东南)(1)请在图中作出的外接圆(尺规作图,保留作图痕迹,不写作法);
(2)如图,是的外接圆,是的直径,点是的中点,过点的切线与的延长线交于点.
①求证:;
②若,,求的半径.
29.(2022河北)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.
(1)求∠C的大小及AB的长;
(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:取4,取4.1)
30.(2022贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.
如图,在中,为边上的高,,点在边上,且,点是线段上任意一点,连接,将沿翻折得.
(1)问题解决:
如图①,当,将沿翻折后,使点与点重合,则______;
(2)问题探究:
如图②,当,将沿翻折后,使,求的度数,并求出此时的最小值;
(3)拓展延伸:
当,将沿翻折后,若,且,根据题意在备用图中画出图形,并求出的值.
31.(2022哈尔滨)已知是的直径,点A,点B是上的两个点,连接,点D,点E分别是半径的中点,连接,且.
(1)如图1,求证:;
(2)如图2,延长交于点F,若,求证:;
(3)如图3,在(2)的条件下,点G是上一点,连接,若,,求的长.
32.(2022黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:
如图,和都是等边三角形,点在上.
求证:以、、为边的三角形是钝角三角形.
(1)【探究发现】小明通过探究发现:连接,根据已知条件,可以证明,,从而得出为钝角三角形,故以、、为边的三角形是钝角三角形.
请你根据小明的思路,写出完整的证明过程.
(2)【拓展迁移】如图,四边形和四边形都是正方形,点在上.
①试猜想:以、、为边的三角形的形状,并说明理由.
②若,试求出正方形的面积.
33.(2022河北)如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD=3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.
(1)求证:△PQM≌△CHD;
(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.
①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;
②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;
③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).
34.(2022河南)综合与实践
综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.
(1)操作判断
操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;
操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.
根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.
(2)迁移探究
小华将矩形纸片换成正方形纸片,继续探究,过程如下:
将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.
①如图2,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;
②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.
(3)拓展应用
在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.
2022年中考数学真题汇编:勾股定理参考答案
1.(2022大庆)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足.点Q为线段的中点,则点Q运动路径的长为( )
A. B. C. D.
【答案】解:设点M的坐标为(0,m),点N的坐标为(n,0),则点Q的坐标为,
∵,
∴,(,) ,
∵当时,,
∴,即,
∴此时点Q在一条线段上运动,线段的一个端点在x轴的负半轴上,坐标为(-4,0),另一端在y轴的负半轴上,坐标为(0,-4),
∴此时点Q的运动路径长为;
∵当时,,
∴,即,
∴此时点Q在一条线段上运动,线段的一个端点在x轴的正半轴上,坐标为(4,0),另一端在y轴的负半轴上,坐标为(0,-4),
∴此时点Q的运动路径长为;
综上分析可知,点Q运动路径的长为,故B正确.
故选:B.
2.(2022河北)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:,乙答:d=1.6,丙答:,则正确的是( )
A. 只有甲答的对 B. 甲、丙答案合在一起才完整
C. 甲、乙答案合在一起才完整 D. 三人答案合在一起才完整
【答案】过点C作于,在上取
∵∠B=45°,BC=2,
∴是等腰直角三角形
∴
∵
∴
若对于d的一个数值,只能作出唯一一个△ABC
通过观察得知:
点A在点时,只能作出唯一一个△ABC(点A在对称轴上),此时,即丙的答案;
点A在射线上时,只能作出唯一一个△ABC(关于对称的AC不存在),此时,即甲的答案,
点A在线段(不包括点和点)上时,有两个△ABC(二者的AC边关于对称);
故选:B
3.(2022大庆)已知圆锥的底面半径为5,高为12,则它的侧面展开图的面积是( )
A. B. C. D.
【答案】解:由题意知,圆锥侧面展开图的半径即圆锥的母线长为,
∴圆锥侧面展开图的面积为,
故选B.
4.(2022黔东南)如图,、分别与相切于点、,连接并延长与交于点、,若,,则的值为( )
A. B. C. D.
【答案】解:连结OA
∵、分别与相切于点A、,
∴PA=PB,OP平分∠APB,OP⊥AP,
∴∠APD=∠BPD,
在△APD和△BPD中,
,
∴△APD≌△BPD(SAS)
∴∠ADP=∠BDP,
∵OA=OD=6,
∴∠OAD=∠ADP=∠BDP,
∴∠AOP=∠ADP+∠OAD=∠ADP+∠BDP=∠ADB,
在Rt△AOP中,OP=,
∴sin∠ADB=.
故选A.
5.(2022龙东地区)如图,中,,AD平分与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若的面积是24,,则PE的长是( )
A. 2.5 B. 2 C. 3.5 D. 3
【答案】解:如图,连接DE,取AD的中点G,连接EG,
∵AB=AC,AD平分与BC相交于点D,
∴AD⊥BC,BD=CD,
∴S△ABD==12,
∵E是AB的中点,
∴S△AED==6,
∵G是AD的中点,
∴S△EGD==3,
∵E是AB的中点,G是AD的中点,
∴EGBC,EG=BD=CD,
∴∠EGP=∠FDP=90°,
∵F是CD的中点,
∴DF=CD,
∴EG=DF,
∵∠EPG=∠FPD,
∴△EGP≌△FDP(AAS),
∴GP=PD=1.5,
∴GD=3,
∵S△EGD==3,即,
∴EG=2,
在Rt△EGP中,由勾股定理,得
PE==2.5,
故选:A.
6.(2022遵义)如图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形.若,,则点到的距离为( )
A. B. C. 1 D. 2
【答案】解:在中,
,,
,
,
设到的距离为,
,
,
故选B.
7.(2022牡丹江、鸡西)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )
A. (600-250)米 B. (600-250)米
C. (350+350)米 D. 500米
【答案】解:如答图,∵BE:AE=5:12,∴可设BE=5k,AE=12k,
∵AB=1300米,
∴在Rt△ABE中,由勾股定理,得AE2+BE2=AB2,
即,解得k=100.
∴AE=1200米,BE=500米.
设EC=x米,
∵∠DBF=60°,∴DF=x米.
又∵∠DAC=30°,∴AC=CD.
∴1200+x=(500+x),解得x=600﹣250.
∴DF=x=600﹣750.
∴CD=DF+CF=600﹣250(米).
∴山高CD为(600﹣250)米.
故选B.
8.(2022牡丹江、鸡西)已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为________
【答案】∵圆锥的底面半径是5,高是12,
根据勾股定理得:圆锥的母线长为13,
∴这个圆锥的侧面展开图的周长=2×13+2π×5=26+10π.
故答案为26+10π.
9.(2022牡丹江、鸡西)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=_______.
【答案】如图,过点D作DE⊥AB于E,
∵∠C=90°,AC=6,BC=8,
∴AB=,
∵AD平分∠CAB,
∴CD=DE,
∴S△ABC=AC•CD+AB•DE=AC•BC,
即×6•CD+×10•CD=×6×8,
解得CD=3.
10.(2022齐齐哈尔)已知圆锥的母线长为高为则该圆锥侧面展开图的圆心角是________________________.
【答案】解:根据母线和高,用勾股定理可以算出圆锥底面圆的半径,
则展开之后扇形的弧长就等于底面圆的周长,
再根据弧长公式,得到,算出.
故答案是:.
11.(2022齐齐哈尔)在△ABC中,,,,则______________.
【答案】解:情况一:当△ABC为锐角三角形时,如图1所示:
过A点作AH⊥BC于H,
∵∠B=45°,
∴△ABH为等腰直角三角形,
∴,
在Rt△ACH中,由勾股定理可知:,
∴.
情况二:当△ABC为钝角三角形时,如图2所示:
由情况一知:,,
∴.
故答案为:或.
12.(2022贵阳)如图,在四边形中,对角线,相交于点,,.若,则的面积是_______,_______度.
【答案】
,
,
,
,
设,
,
,
,
在中,由勾股定理得,
,
解得或,
对角线,相交于点,
,
,
,
,
过点E作EF⊥AB,垂足为F,
,
,
,
,
,
,
,
故答案为:,.
13.(2022龙东地区)如图,在中,AB是的弦,的半径为3cm,C为上一点,,则AB的长为________cm.
【答案】解:连接OA、OB,过点O作OD⊥AB于点D,
,,
,
,
,
,
,
,
,
,
故答案为:.
14.(2022黔东南)如图,折叠边长为4cm的正方形纸片,折痕是,点落在点处,分别延长、交于点、,若点是边的中点,则______cm.
【答案】解:连接如图,
∵四边形ABCD是正方形,
∴
∵点M为BC的中点,
∴
由折叠得,∠
∴∠,
设则有
∴
又在中,,
∵
∴
∴
在中,
∴
解得,(舍去)
∴
∴
∴
∵∠
∴∠
∴∠
又∠
∴△
∴即
∴
故答案为:
15.(2022龙东地区)如图,菱形ABCD中,对角线AC,BD相交于点O,,,AH是的平分线,于点E,点P是直线AB上的一个动点,则的最小值是________.
【答案】解:如图,作点O关于AB的对称点F,连接OF交AB于G,连接PE交直线AB于P,连接PO,则PO=PF,此时,PO+PE最小,最小值=EF,
∵菱形ABCD,
∴AC⊥BD,OA=OC,O=OD,AD=AB=3,
∵∠BAD=60°,
∴△ABD是等边三角形,
∴BD=AB=3,∠BAO=30°,
∴OB=,
∴OA=,
∴点O关于AB的对称点F,
∴OF⊥AB,OF=2OG=OA=,
∴∠AOG=60°,
∵CE⊥AH于E,OA=OC,
∴OE=OC=OA=,
∵AH平分∠BAC,
∴∠CAE=15°,
∴∠AEC=∠CAE=15°,
∴∠DOE=∠AEC+∠CAE=30°,
∴∠DOE+∠AOG=30°+60°=90°,
∴∠FOE=90°,
∴由勾股定理,得EF=,
∴PO+PE最小值=.
故答案为:.
16.(2022河南)如图,在Rt△ABC中,∠ACB=90°,,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.
【答案】如图,连接,
在Rt△ABC中,∠ACB=90°,,
,,
,
根据题意可得,当∠ADQ=90°时,点在上,且,
,
在中,,
故答案为:.
17.(2022铜仁)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP//EM交MC于点P,则MN+NP的最小值为________.
【答案】解:作点P关于CE的对称点P′,
由折叠的性质知CE是∠DCM的平分线,
∴点P′在CD上,
过点M作MF⊥CD于F,交CE于点G,
∵MN+NP=MN+NP′≤MF,
∴MN+NP的最小值为MF的长,
连接DG,DM,
由折叠的性质知CE为线段 DM的垂直平分线,
∵AD=CD=2,DE=1,
∴CE==,
∵CE×DO=CD×DE,
∴DO=,
∴EO=,
∵MF⊥CD,∠EDC=90°,
∴DE∥MF,
∴∠EDO=∠GMO,
∵CE为线段DM的垂直平分线,
∴DO=OM,∠DOE=∠MOG=90°,
∴△DOE≌△MOG,
∴DE=GM,
∴四边形DEMG为平行四边形,
∵∠MOG=90°,
∴四边形DEMG为菱形,
∴EG=2OE=,GM= DE=1,
∴CG=,
∵DE∥MF,即DE∥GF,
∴△CFG∽△CDE,
∴,即,
∴FG=,
∴MF=1+=,
∴MN+NP的最小值为.
故答案为:.
18.(2022遵义)如图,在等腰直角三角形中,,点,分别为,上的动点,且,.当的值最小时,的长为__________.
【答案】如图,过点作,且,连接,如图1所示,
,
又,
,
,
,
当三点共线时,取得最小值,
此时如图2所示,
在等腰直角三角形中,,
,
,
,
,
,
,
,
,
设,
,
,
,
,,
,
,
即取得最小值为,
故答案为:.
19.(2022哈尔滨)如图,菱形的对角线相交于点O,点E在上,连接,点F为的中点,连接,若,,,则线段的长为___________.
【答案】已知菱形ABCD,对角线互相垂直平分,
∴AC⊥BD,在Rt△AOE中,
∵OE=3,OA=4,
∴根据勾股定理得,
∵AE=BE,
∴,
在Rt△AOB中,
即菱形的边长为,
∵点F为的中点,点O为DB中点,
∴ .
故答案为
20.(2022大庆)如图,正方形中,点E,F分别是边上的两个动点,且正方形的周长是周长的2倍,连接分别与对角线交于点M,N.给出如下几个结论:①若,则;②;③若,则;④若,则.其中正确结论的序号为____________.
【答案】解:∵正方形的周长是周长的2倍,
∴,
,
①若,则,故①不正确;
如图,在的延长线上取点,使得,
四边形是正方形,
,,
,
,,,
,,
,
,,,
,
,
,
,
即,故②正确;
如图,作于点,连接,
则,
,,
,
同理可得,
,
关于对称轴,关于对称,
,
,
,
是直角三角形,
③若,
,
,故③不正确,
,
若,
即,
,
,,
又,
,
,
即,
,
,
,
,
,
故④不正确.
故答案为:②.
21.(2022河北)如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点C,D的连线交于点E,则
(1)AB与CD是否垂直?______(填“是”或“否”);
(2)AE=______.
【答案】 解:(1)如图:AC=CF=2,CG=DF=1,∠ACG=∠CFD=90°,
∴△ACG≌△CFD,
∴∠CAG=∠FCD,
∵∠ACE+∠FCD=90°,
∴∠ACE+∠CAG=90°,
∴∠CEA=90°,
∴AB与CD是垂直的,
故答案为:是;
(2)AB=2,
∵AC∥BD,
∴△AEC∽△BED,
∴,即,
∴,
∴AE=BE=.
故答案为:.
22.(2022哈尔滨)如图,方格纸中每个小正方形的边长均为1,的顶点和线段的端点均在小正方形的顶点上.
(1)在方格纸中面出,使与关于直线对称(点D在小正方形的顶点上);
(2)在方格纸中画出以线段为一边的平行四边形(点G,点H均在小正方形的顶点上),且平行四边形的面积为4.连接,请直接写出线段的长.
【答案】
(1)如图
(2)如图,
23.(2022龙东地区)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,的三个顶点坐标分别为,,.
(1)将先向左平移6个单位,再向上平移4个单位,得到,画出两次平移后的,并写出点的坐标;
(2)画出绕点顺时针旋转90°后得到,并写出点的坐标;
(3)在(2)的条件下,求点旋转到点的过程中所经过的路径长(结果保留).
【答案】
(1)解:如图所示△A1B1C1即为所求,
;
(2)如图所示△A2B2C2即为所求,;
(3)∵
∴点旋转到点所经过的路径长为.
24.(2022贵阳)如图,在正方形中,为上一点,连接,的垂直平分线交于点,交于点,垂足为,点在上,且.
(1)求证:;
(2)若,,求的长.
【答案】
(1)在正方形ABCD中,有AD=DC=CB=AB,∠A=∠D=∠C=90°,,
,
∵,∠A=∠D=90°,,
∴四边形ADFM是矩形,
∴AD=MF,∠AMF=90°=∠MFD,
∴∠BMF=90°=∠NFM,即∠BMO+∠OMF=90°,AB=AD=MF,
∵MN是BE的垂直平分线,
∴MN⊥BE,
∴∠BOM=90°=∠BMO+∠MBO,
∴∠MBO=∠OMF,
∵,
∴△ABE≌△FMN;
(2)连接ME,如图,
∵AB=8,AE=6,
∴在Rt△ABE中,,
∴根据(1)中全等的结论可知MN=BE=10,
∵MN是BE的垂直平分线,
∴BO=OE==5,BM=ME,
∴AM=AB-BM=8-ME,
∴在Rt△AME中,,
∴,解得:,
∴,
∴在Rt△BMO中,,
∴,
∴ON=MN-MO=.
即NO的长为:.
25.(2022铜仁)如图,D是以AB为直径的⊙O上一点,过点D的切线DE交AB的延长线于点E,过点B作BC⊥DE交AD的延长线于点C,垂足为点F.
(1)求证:AB=CB;
(2)若AB=18,sinA=,求EF长.
【答案】
(1)证明:连接OD,如图1,
∵DE是⊙O的切线,
∴OD⊥DE.
∵BC⊥DE,
∴OD∥BC.
∴∠ODA=∠C.
∵OA=OD,
∴∠ODA=∠A.
∴∠A=∠C.
∴AB=BC;
(2)解:连接BD,则∠ADB=90°,如图2,
在Rt△ABD中,
∵sinA==,AB=18,
∴BD=6.
∵OB=OD,
∴∠ODB=∠OBD.
∵∠OBD+∠A=∠FDB+∠ODB=90°,
∴∠A=∠FDB.
∴sin∠A=sin∠FDB.
在Rt△BDF中,
∵sin∠BDF==,
∴BF=2.
由(1)知:OD∥BF,
∴△EBF∽△EOD.
∴=.即:=.
解得:BE=.
∴EF=.
26.(2022遵义)将正方形和菱形按照如图所示摆放,顶点与顶点重合,菱形的对角线经过点,点,分别在,上.
(1)求证:;
(2)若,求的长.
【答案】
(1)证明:正方形和菱形,
,
在与中
()
(2)如图,连接交于点,
,
,
在中,
,
,
中,,
,
在中,,
,
,
.
27.(2022大庆)如图,已知是外接圆的直径,.点D为外的一点,.点E为中点,弦过点E..连接.
(1)求证:是的切线;
(2)求证:;
(3)当时,求弦的长.
【答案】
(1)解:∵BC是△ABC外接圆⊙O的直径,
∴∠BAC=90°,
∴∠B+∠ACB=90°,
∵∠ACD=∠B,
∴∠ACD+∠ACB=90°,
∴∠BCD=90°,
∵ OC 是 OO 的半径,
∴CD 是 OO 的切线;
(2)如下图,连接AF、CG,
∴∠AFE=∠ECG,
∵∠AEF=∠CEG,
∴△FEA∽△CEG,
∴,
∵点E为AC中点,
∴AE=CE,
∵EF=2EG,
∴,
∴CE2=2EG2,
∵∠BAC=90°,点E为AC中点,
∴EOAB,
∴∠OEC=90°,
∴OC2-OE2=EC2,
∴OC2-OE2=2EG2,
∴(OC+OE)(OC−OE)=EG⋅EF;
(3)作ON⊥FG,延长FG交线段于点W,
∵BC=16,
∴OC=8,
∵FGBC,
∴四边形ONWC为矩形,
∵EF=2EG,
∴FG=3EG,
∴NG=1.5EG,NE=0.5EG,EW=8-1.5EG+EG=8-0.5EG,
由(2)可知:OC2-OE2=2EG2,
∴CE2=2EG2,
∴OE2=64-2EG2,ON2=64-2EG2-EG2,EW2=(8-0.5EG)2,
∴(8-0.5EG)2+64-2EG2-EG2=2EG2,
解得EG=,
∴FG=3EG=.
28.(2022黔东南)(1)请在图中作出的外接圆(尺规作图,保留作图痕迹,不写作法);
(2)如图,是的外接圆,是的直径,点是的中点,过点的切线与的延长线交于点.
①求证:;
②若,,求的半径.
【答案】(1)如下图所示
∵的外接圆的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,
∴做AB、AC垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到的外接圆;
(2)
①如下图所示,连接OC、OB
∵BD是的切线
∴
∵是对应的圆周角,是对应的圆心角
∴
∵点是的中点
∴
∴
∴
∴
∴
②如下图所示,连接CE
∵与是对应的圆周角
∴
∵是的直径
∴
∴
∴
∵
∴
∴的半径为.
29.(2022河北)如图,某水渠的横断面是以AB为直径的半圆O,其中水面截线.嘉琪在A处测得垂直站立于B处的爸爸头顶C的仰角为14°,点M的俯角为7°.已知爸爸的身高为1.7m.
(1)求∠C的大小及AB的长;
(2)请在图中画出线段DH,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:取4,取4.1)
【答案】
(1)解:∵水面截线
,
,
,
在中,,,
,
解得.
(2)过点作,交MN于D点,交半圆于H点,连接OM,过点M作MG⊥OB于G,如图所示:
水面截线,,
,,
为最大水深,
,
,
,且,
,
,即,即,
在中,,,
,即,
解得,
,
最大水深约为米.
30.(2022贵阳)小红根据学习轴对称的经验,对线段之间、角之间的关系进行了拓展探究.
如图,在中,为边上的高,,点在边上,且,点是线段上任意一点,连接,将沿翻折得.
(1)问题解决:
如图①,当,将沿翻折后,使点与点重合,则______;
(2)问题探究:
如图②,当,将沿翻折后,使,求的度数,并求出此时的最小值;
(3)拓展延伸:
当,将沿翻折后,若,且,根据题意在备用图中画出图形,并求出的值.
【答案】
(1),
是等边三角形,
四边形平行四边形,
,
,
为边上的高,
,
(2),,
是等腰直角三角形,
,
,
,
,
,
,
,
,是等腰直角三角形,为底边上的高,则
点在边上,
当时,取得最小值,最小值为;
(3)如图,连接,
,则,
设, 则,,
折叠,
,
,
,
,
,
,
,
,
,
,
在中,,
,
延长交于点,如图,
,
,
,
,
,
在中,,
,
.
31.(2022哈尔滨)已知是的直径,点A,点B是上的两个点,连接,点D,点E分别是半径的中点,连接,且.
(1)如图1,求证:;
(2)如图2,延长交于点F,若,求证:;
(3)如图3,在(2)的条件下,点G是上一点,连接,若,,求的长.
【答案】
(1)如图1.∵点D,点E分别是半径的中点
∴,
∵,
∴
∵,
∴
∵
∴,
∴;
(2)如图2.∵,
∴
由(1)得,
∴
∴,
∴
∵
∴,
∴
(3)如图3.∵,
∴
∴
连接.∵
∴,
∴,
∵
设,
∴
在上取点M,使得,连接
∵,
∴
∴,
∴为等边三角形
∴
∵,
∴
∴,
∴
∴,
过点H作于点N
,
∴,
∴
∵,,
∴
∵,
∴,
∴
∴,
在中,,
∴
∴,
∴.
32.(2022黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:
如图,和都是等边三角形,点在上.
求证:以、、为边的三角形是钝角三角形.
(1)【探究发现】小明通过探究发现:连接,根据已知条件,可以证明,,从而得出为钝角三角形,故以、、为边的三角形是钝角三角形.
请你根据小明的思路,写出完整的证明过程.
(2)【拓展迁移】如图,四边形和四边形都是正方形,点在上.
①试猜想:以、、为边的三角形的形状,并说明理由.
②若,试求出正方形的面积.
【答案】
(1)证明:∵△ABC与△EBD均为等边三角形,
∴BE=BD,AB=CB,∠EBD=∠ABC=60°,
∴∠EBA+∠ABD=∠ABD+∠DBC,
∴∠EBA=∠DBC,
在△EBA和△DBC中,
,
∴△EBA≌△DBC(SAS),
∴∠AEB=∠CDB=60°,AE=CD,
∴∠ADC=∠ADB+∠BDC=120°,
∴△ADC为钝角三角形,
∴以、、为边的三角形是钝角三角形.
(2)证明:①以、、为边的三角形是直角三角形.
连结CG,
∵四边形和四边形都是正方形,
∴∠EBG=∠ABC,EB=GB,AB=CB,
∵EG为正方形的对角线,
∴∠BEA=∠BGE=45°,
∴∠EBA+∠ABG=∠ABG+∠GBC=90°,
∴∠EBA=∠GBC,
在△EBA和△GBC中,
,
∴△EBA≌△GBC(SAS),
∴AE=CG,∠BEA=∠BGC=45°,
∴∠AGC=∠AGB+∠BGC=45°+45°=90°,
∴△AGC为直角三角形,
∴以、、为边的三角形是直角三角形;
②连结BD,
∵△AGC为直角三角形,,
∴AC=,
∴四边形ABCD正方形,
∴AC=BD=,
∴S四边形ABCD=.
33.(2022河北)如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD=3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.
(1)求证:△PQM≌△CHD;
(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.
①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;
②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;
③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).
【答案】
(1)∵,
∴
则在四边形中
故四边形为矩形
,
在中,
∴,
∵
∴;
(2)①过点Q作于S
由(1)得:
在中,
∴
平移扫过面积:
旋转扫过面积:
故边PQ扫过的面积:
②运动分两个阶段:平移和旋转
平移阶段:
旋转阶段:
由线段长度得:
取刚开始旋转状态,以PM为直径作圆,则H为圆心,延长DK与圆相交于点G,连接GH,GM,过点G作于T
设,则
在中:
设,则,,
,,
∵DM为直径
∴
在中 :
在中:
在中:
∴,
PQ转过的角度:
s
总时间:
③设CF=m,则EF=BC-BE-CF=9-d-m,CE=9-d,
当旋转角<30°时,DE在DH的左侧,如图:
∵∠EDF=30°,∠C=30°,
∴∠EDF=∠C,
又∵∠DEF=∠CED,
∴,
∴,即,
∴,
∵在中,,
∴,
∴
当旋转角≥30°时,DE在DH上或右侧,如图:CF=m,则EF=BC-BE-CF=9-d-m,CE=9-d,
同理:可得
综上所述:.
34.(2022河南)综合与实践
综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.
(1)操作判断
操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;
操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.
根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.
(2)迁移探究
小华将矩形纸片换成正方形纸片,继续探究,过程如下:
将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.
①如图2,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;
②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.
(3)拓展应用
在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.
【答案】
(1)解:
(2)∵四边形ABCD是正方形
∴AB=BC,∠A=∠ABC=∠C=90°
由折叠性质得:AB=BM,∠PMB=∠BMQ=∠A=90°
∴BM=BC
①
∴
②
(3)
,DQ=DF+FQ=4+1=5(cm)
由(2)可知,
设
,
即
解得:
∴
相关试卷
2022年中考数学真题汇编:分式方程(含解析):
这是一份2022年中考数学真题汇编:分式方程(含解析),共11页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022年中考数学真题汇编:对称问题(含解析):
这是一份2022年中考数学真题汇编:对称问题(含解析),共55页。
2022年中考数学真题汇编:圆(含解析):
这是一份2022年中考数学真题汇编:圆(含解析),共54页。