所属成套资源:2022年中考数学真题分类汇编
- 2022年中考数学真题分类汇编:反比例函数1(含答案) 试卷 20 次下载
- 2022年中考数学真题汇编:锐角三角函数(含解析) 试卷 23 次下载
- 2022年中考数学真题汇编:勾股定理(含解析) 试卷 23 次下载
- 2022年中考数学真题汇编:全等三角形2(含解析) 试卷 23 次下载
- 2022年中考数学真题汇编:三角形(含解析) 试卷 23 次下载
2022年中考数学真题汇编:平行四边形(含解析)
展开
这是一份2022年中考数学真题汇编:平行四边形(含解析),共48页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年中考数学真题综合练习:平行四边形
一、选择题
1.(2022广东)如图,在中,一定正确的是( )
A. B. C. D.
2.(2022福建)如图,现有一把直尺和一块三角尺,其中,,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到,点对应直尺的刻度为0,则四边形的面积是( )
A. 96 B. C. 192 D.
3.(2022贵阳)如图,将菱形纸片沿着线段剪成两个全等的图形,则的度数是( )
A. 40° B. 60° C. 80° D. 100°
4.(2022安徽)两个矩形的位置如图所示,若,则( )
A. B. C. D.
5.(2022黔东南)如图,在边长为2的等边三角形的外侧作正方形,过点作,垂足为,则的长为( )
A. B. C. D.
6.(2022海南)如图,菱形中,点E是边的中点,垂直交的延长线于点F,若,则菱形的边长是( )
A. 3 B. 4 C. 5 D.
7.(2022甘肃武威)如图1,在菱形中,,动点从点出发,沿折线方向匀速运动,运动到点停止.设点的运动路程为,的面积为,与的函数图象如图2所示,则的长为( )
A. B. C. D.
8.(2022铜仁)如图,在矩形中,,则D的坐标为( )
A. B. C. D.
9.(2022铜仁)如图,在边长为6的正方形中,以为直径画半圆,则阴影部分的面积是( )
A. 9 B. 6 C. 3 D. 12
10.(2022贵港)如图,在边长为1的菱形中,,动点E在边上(与点A、B均不重合),点F在对角线上,与相交于点G,连接,若,则下列结论错误的是( )
A. B. C. D. 最小值为
二、填空题
11.(2022北京)如图,在矩形中,若,则的长为_______.
12.(2022甘肃武威)如图,菱形中,对角线与相交于点,若,,则的长为_________cm.
13.(2022甘肃武威)如图,在四边形中,,,在不添加任何辅助线的前提下,要想四边形成为一个矩形,只需添加的一个条件是_______________.
14.(2022铜仁)如图,四边形ABCD为菱形,∠ABC=80°,延长BC到E,在∠DCE内作射钱CM,使得∠ECM=30°,过点D作DF⊥CM,垂足为F.若DF=,则BD的长为______(结果保留很号).
15.(2022黔东南)如图,矩形的对角线,相交于点,//,//.若,则四边形的周长是_______.
16.(2022贵港)如图,在中,,以点A为圆心、为半径画弧交于点E,连接,若,则图中阴影部分的面积是_______.
17.(2022海南)如图,正方形中,点E、F分别在边上,,则___________;若的面积等于1,则的值是___________.
18.(2022毕节)如图,在中,,点P为边上任意一点,连接,以,为邻边作平行四边形,连接,则长度的最小值为_________.
19.(2022黔东南)如图,折叠边长为4cm的正方形纸片,折痕是,点落在点处,分别延长、交于点、,若点是边的中点,则______cm.
20.(2022安徽)如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数的图象经过点C,的图象经过点B.若,则________.
21.(2022安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:
(1)________°;
(2)若,,则________.
三、解答题
22.(2022北部湾)如图,在中,BD是它的一条对角线,
(1)求证:;
(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
(3)连接BE,若,求的度数.
23.(2022梧州)如图,在中,E,G,H,F分别是上的点,且.求证:.
24.(2022北京)如图,在中,交于点,点在上,.
(1)求证:四边形是平行四边形;
(2)若求证:四边形是菱形.
25.(2022贺州)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且,连接AF,CE,AC,EF,且AC与EF相交于点O.
(1)求证:四边形AFCE是平行四边形;
(2)若AC平分,,求四边形AFCE的面积.
26.(2022福建)如图,△ABC内接于⊙O,交⊙O于点D,交BC于点E,交⊙O于点F,连接AF,CF.
(1)求证:AC=AF;
(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).
27.(2022云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°
(1)求证:四边形ABDF是矩形;
(2)若AD=5,DF=3,求四边形ABCF的面积S.
28.(2022海南)如图1,矩形中,,点P在边上,且不与点B、C重合,直线与的延长线交于点E.
(1)当点P是的中点时,求证:;
(2)将沿直线折叠得到,点落在矩形的内部,延长交直线于点F.
①证明,并求出在(1)条件下的值;
②连接,求周长的最小值;
③如图2,交于点H,点G是的中点,当时,请判断与的数量关系,并说明理由.
29.(2022福建)已知,AB=AC,AB>BC.
(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若,求∠ADB的度数.
30.(2022毕节)如图1,在四边形中,和相交于点O,.
(1)求证:四边形是平行四边形;
(2)如图2,E,F,G分别是的中点,连接,若,求的周长.
31.(2022安徽)已知四边形ABCD中,BC=CD.连接BD,过点C作BD的垂线交AB于点E,连接DE.
(1)如图1,若,求证:四边形BCDE是菱形;
(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.
(ⅰ)求∠CED的大小;
(ⅱ)若AF=AE,求证:BE=CF.
32.(2022黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:
如图,和都是等边三角形,点在上.
求证:以、、为边的三角形是钝角三角形.
(1)【探究发现】小明通过探究发现:连接,根据已知条件,可以证明,,从而得出为钝角三角形,故以、、为边的三角形是钝角三角形.
请你根据小明的思路,写出完整的证明过程.
(2)【拓展迁移】如图,四边形和四边形都是正方形,点在上.
①试猜想:以、、为边的三角形的形状,并说明理由.
②若,试求出正方形的面积.
33.(2022黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:
如图,和都是等边三角形,点在上.
求证:以、、为边的三角形是钝角三角形.
(1)【探究发现】小明通过探究发现:连接,根据已知条件,可以证明,,从而得出为钝角三角形,故以、、为边的三角形是钝角三角形.
请你根据小明的思路,写出完整的证明过程.
(2)【拓展迁移】如图,四边形和四边形都是正方形,点在上.
①试猜想:以、、为边的三角形的形状,并说明理由.
②若,试求出正方形的面积.
2022年中考数学真题综合练习:平行四边形参考答案
一、选择题
1.(2022广东)如图,在中,一定正确的是( )
A. B. C. D.
【答案】解:∵四边形ABCD是平行四边形
∴AB=CD,AD=BC
故选C.
2.(2022福建)如图,现有一把直尺和一块三角尺,其中,,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到,点对应直尺的刻度为0,则四边形的面积是( )
A. 96 B. C. 192 D.
【答案】解:依题意为平行四边形,
∵,,AB=8,.
∴平行四边形的面积=
故选B
3.(2022贵阳)如图,将菱形纸片沿着线段剪成两个全等的图形,则的度数是( )
A. 40° B. 60° C. 80° D. 100°
【答案】解:∵纸片是菱形
∴对边平行且相等
∴(两直线平行,内错角相等)
故选:C.
4.(2022安徽)两个矩形的位置如图所示,若,则( )
A. B. C. D.
【答案】解:如图,∠3=∠1-90°=α-90°,
∠2=90°-∠3=180°-α.
故选:C.
5.(2022黔东南)如图,在边长为2的等边三角形的外侧作正方形,过点作,垂足为,则的长为( )
A. B. C. D.
【答案】解:如图,过点A分别作AG⊥BC于点G,AH⊥DF于点H,
∵DF⊥BC,
∴∠GFH=∠AHF=∠AGF=90°,
∴四边形AGFH是矩形,
∴FH=AG,
∵△ABC为等边三角形,
∴∠BAC=60°,BC=AB=2,
∴∠BAG=30°,BG=1,
∴,
∴,
在正方形ABED中,AD=AB=2,∠BAD=90°,
∴∠DAH=∠BAG=30°,
∴,
∴.
故选:D
6.(2022海南)如图,菱形中,点E是边的中点,垂直交的延长线于点F,若,则菱形的边长是( )
A. 3 B. 4 C. 5 D.
【答案】过C作CM⊥AB延长线于M,
∵
∴设
∵点E是边的中点
∴
∵菱形
∴,CE∥AB
∵⊥,CM⊥AB
∴四边形EFMC是矩形
∴,
∴BM=3x
在Rt△BCM中,
∴,解得或(舍去)
∴
故选:B.
7.(2022甘肃武威)如图1,在菱形中,,动点从点出发,沿折线方向匀速运动,运动到点停止.设点的运动路程为,的面积为,与的函数图象如图2所示,则的长为( )
A. B. C. D.
【答案】解:在菱形ABCD中,∠A=60°,
∴△ABD为等边三角形,
设AB=a,由图2可知,△ABD的面积为,
∴△ABD的面积
解得:a=
故选B
8.(2022铜仁)如图,在矩形中,,则D的坐标为( )
A. B. C. D.
【答案】解:∵A(-3,2),B(3,2),
∴AB=6,轴,
∵四边形ABCD是矩形,
∴CD=AB=6,轴,
同理可得轴,
∵点C(3,-1),
∴点D的坐标为(-3,-1),
故选D.
9.(2022铜仁)如图,在边长为6的正方形中,以为直径画半圆,则阴影部分的面积是( )
A. 9 B. 6 C. 3 D. 12
【答案】解:设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,
∵四边形ABCD是正方形,
∴∠OCE=45°,
∵OE=OC,
∴∠OEC=∠OCE=45°,
∴∠EOC=90°,
∴OE垂直平分BC,
∴BE=CE,
∴弓形BE的面积=弓形CE的面积,
∴,
故选A.
10.(2022贵港)如图,在边长为1的菱形中,,动点E在边上(与点A、B均不重合),点F在对角线上,与相交于点G,连接,若,则下列结论错误的是( )
A. B. C. D. 最小值为
【答案】解:∵四边形ABCD是菱形,,
∴AB=AD=BC=CD,∠BAC=∠DAC=∠BAD==,
∴△BAF≌△DAF≌CBE,△ABC是等边三角形,
∴DF=CE,故A项答案正确,
∠ABF=∠BCE,
∵∠ABC=∠ABF+∠CBF=60゜,
∴∠GCB+∠GBC=60゜,
∴∠BGC=180゜-60゜=180゜-(∠GCB+∠GBC)=120゜,故B项答案正确,
∵∠ABF=∠BCE,∠BEG=∠CEB,
∴△BEG∽△CEB,
∴ ,
∴,
∵,
∴,故C项答案正确,
∵,BC=1,点G在以线段BC为弦的弧BC上,
∴当点G在等边△ABC的内心处时,AG取最小值,如下图,
∵△ABC是等边三角形,BC=1,
∴,AF=AC=,∠GAF=30゜,
∴AG=2GF,AG2=GF2+AF2,
∴ 解得AG=,故D项错误,
故应选:D
二、填空题
11.(2022北京)如图,在矩形中,若,则的长为_______.
【答案】解:在矩形中:,,
∴,,
∴,
∴,
故答案为:1.
12.(2022甘肃武威)如图,菱形中,对角线与相交于点,若,,则的长为_________cm.
【答案】解: 菱形中,对角线,相交于点,AC=4,
,,AO=OC=AC=2
,
,
,
故答案为:8.
13.(2022甘肃武威)如图,在四边形中,,,在不添加任何辅助线的前提下,要想四边形成为一个矩形,只需添加的一个条件是_______________.
【答案】解:需添加的一个条件是∠A=90°,理由如下:
∵AB∥DC,AD∥BC,
∴四边形ABCD是平行四边形,
又∵∠A=90°,
∴平行四边形ABCD是矩形,
故答案为:∠A=90°(答案不唯一).
14.(2022铜仁)如图,四边形ABCD为菱形,∠ABC=80°,延长BC到E,在∠DCE内作射钱CM,使得∠ECM=30°,过点D作DF⊥CM,垂足为F.若DF=,则BD的长为______(结果保留很号).
【答案】解:如图,连接AC交BD于点H,
由菱形的性质得∠ADC=∠ABC=80°,∠DCE=80°,∠DHC=90°,
又∵∠ECM=30°,
∴∠DCF=50°,
∵DF⊥CM,
∴∠CFD=90°,
∴∠CDF=40°,
又∵四边形ABCD是菱形,
∴BD平分∠ADC,
∴∠HDC=40°,
在△CDH和△CDF中,,
∴△CDH≌△CDF(AAS),
∴DH=DF=,
∴DB=2DH=.
故答案为:.
15.(2022黔东南)如图,矩形的对角线,相交于点,//,//.若,则四边形的周长是_______.
【答案】解:∵四边形ABCD是矩形,
∴AC=BD=10,OA=OC,OB=OD,
∴OC=OD=BD=5,
∵//,//.,
∴四边形CODE是平行四边形,
∵OC=OD =5,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×5=20.
故答案为20.
16.(2022贵港)如图,在中,,以点A为圆心、为半径画弧交于点E,连接,若,则图中阴影部分的面积是_______.
【答案】解:过点D作DF⊥AB于点F,
∵,
∴AD=
∴DF=ADsin45°= ,
∵AE=AD=2 ,
∴EB=AB−AE= ,
∴S阴影=S▱ABCD−S扇形ADE−S△EBC
=
故答案为:.
17.(2022海南)如图,正方形中,点E、F分别在边上,,则___________;若的面积等于1,则的值是___________.
【答案】∵正方形
∴,
∵
∴(HL)
∴,
∵,
∴
∴
设
∴
∴
∵的面积等于1
∴,解得,(舍去)
∴
故答案为:60;.
18.(2022毕节)如图,在中,,点P为边上任意一点,连接,以,为邻边作平行四边形,连接,则长度的最小值为_________.
【答案】解:∵,
∴,
∵四边形APCQ是平行四边形,
∴PO=QO,CO=AO,
∵PQ最短也就是PO最短,
∴过O作BC的垂线,
∵,
∴,
∴,
∴,
∴,
∴则PQ的最小值为,
故答案为:.
19.(2022黔东南)如图,折叠边长为4cm的正方形纸片,折痕是,点落在点处,分别延长、交于点、,若点是边的中点,则______cm.
【答案】解:连接如图,
∵四边形ABCD是正方形,
∴
∵点M为BC的中点,
∴
由折叠得,∠
∴∠,
设则有
∴
又在中,,
∵
∴
∴
在中,
∴
解得,(舍去)
∴
∴
∴
∵∠
∴∠
∴∠
又∠
∴△
∴即
∴
故答案为:
20.(2022安徽)如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数的图象经过点C,的图象经过点B.若,则________.
【答案】解:过点C作CD⊥OA于D,过点B作BE⊥x轴于E,
∴CD∥BE,
∵四边形ABCO为平行四边形,
∴CB∥OA,即CB∥DE,OC=AB,
∴四边形CDEB为平行四边形,
∵CD⊥OA,
∴四边形CDEB为矩形,
∴CD=BE,
∴在Rt△COD和Rt△BAE中,
,
Rt△COD≌Rt△BAE(HL),
∴S△OCD=S△ABE,
∵OC=AC,CD⊥OA,
∴OD=AD,
∵反比例函数的图象经过点C,
∴S△OCD=S△CAD=,
∴S平行四边形OCBA=4S△OCD=2,
∴S△OBA=,
∴S△OBE=S△OBA+S△ABE=,
∴.
故答案为3.
21.(2022安徽)如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:
(1)________°;
(2)若,,则________.
【答案】(1)∵四边形ABCD是正方形,
∴∠A=90°,AB=AD,
∴∠ABE+∠AEB=90°,
∵FG⊥AG,
∴∠G=∠A=90°,
∵△BEF是等腰直角三角形,
∴BE=FE,∠BEF=90°,
∴∠AEB+∠FEG=90°,
∴∠FEG=∠EBA,
在△ABE和△GEF中,
,
∴△ABE≌△GEF(AAS),
∴AE=FG,AB=GE,
在正方形ABCD中,AB=AD
∵AD=AE+DE,EG=DE+DG,
∴AE=DG=FG,
∴∠FDG=∠DFG=45°.
故填:45°.
(2)如图,作FH⊥CD于H,
∴∠FHD=90°
∴四边形DGFH是正方形,
∴DH=FH=DG=2,
∴AGFH,
∴,
∴DM=,MH=,
作MP⊥DF于P,
∵∠MDP=∠DMP=45°,
∴DP=MP,
∵DP2+MP2=DM2,
∴DP=MP=,
∴PF=
∵∠MFP+∠MFH=∠MFH+∠NFH=45°,
∴∠MFP=∠NFH,
∵∠MPF=∠NHF=90°,
∴△MPF∽△NHF,
∴,即,
∴NH=,
∴MN=MH+NH=+=.
故填: .
三、解答题
22.(2022北部湾)如图,在中,BD是它的一条对角线,
(1)求证:;
(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);
(3)连接BE,若,求的度数.
【答案】
(1)四边形ABCD是平行四边形,
,
,
(2)如图,EF即为所求;
(3) BD的垂直平分线为EF,
,
,
,
,
.
23.(2022梧州)如图,在中,E,G,H,F分别是上的点,且.求证:.
【答案】证明:∵四边形ABCD为平行四边形,
∴∠A=∠C,AB=CD,
又已知BE=DH,
∴AB-BE=CD-DH,
∴AE=CH,
在△AEF和△CHG中
,
∴△AEF≌△CHG(SAS),
∴EF=HG.
24.(2022北京)如图,在中,交于点,点在上,.
(1)求证:四边形是平行四边形;
(2)若求证:四边形是菱形.
【答案】
(1)证明:∵四边形ABCD为平行四边形,
∴,,
∵,
∴,
即,
∴四边形是平行四边形.
(2)∵四边形ABCD为平行四边形,
∴,
∴,
∵
∴,
∴,
∴四边形ABCD为菱形,
∴,
即,
∵四边形是平行四边形,
∴四边形是菱形.
25.(2022贺州)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且,连接AF,CE,AC,EF,且AC与EF相交于点O.
(1)求证:四边形AFCE是平行四边形;
(2)若AC平分,,求四边形AFCE的面积.
【答案】
(1)证明:四边形ABCD是平行四边形
,即.
四边形AFCE是平行四边形.
(2)解:,
.
平分,
.
.
,由(1)知四边形AFCE是平行四边形,
平行四边形AFCE是菱形.
,
在中,,
.
.
26.(2022福建)如图,△ABC内接于⊙O,交⊙O于点D,交BC于点E,交⊙O于点F,连接AF,CF.
(1)求证:AC=AF;
(2)若⊙O的半径为3,∠CAF=30°,求的长(结果保留π).
【答案】
(1)∵,,
∴四边形ABED是平行四边形,
∴∠B=∠D.
又∠AFC=∠B,∠ACF=∠D,
∴,
∴AC=AF.
(2)连接AO,CO.
由(1)得∠AFC=∠ACF,
又∵∠CAF=30°,
∴,
∴.
∴的长.
27.(2022云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°
(1)求证:四边形ABDF是矩形;
(2)若AD=5,DF=3,求四边形ABCF的面积S.
【答案】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,即AB∥CF,
∴∠BAE=∠FDE,
∵E为线段AD的中点,
∴AE=DE,
又∵∠AEB=∠DEF,
∴≌(ASA),
∴AB=DF,
又∵AB∥DF,
∴四边形ABDF是平行四边形,
∵∠BDF=90°,
∴四边形ABDF是矩形;
(2)解:由(1)知,四边形ABDF是矩形,
∴AB=DF=3,∠AFD=90°,
∴在中,,
∵四边形ABCD是平行四边形,
∴AB=CD=3,
∴CF=CD+DF=3+3=6,
∴.
28.(2022海南)如图1,矩形中,,点P在边上,且不与点B、C重合,直线与的延长线交于点E.
(1)当点P是的中点时,求证:;
(2)将沿直线折叠得到,点落在矩形的内部,延长交直线于点F.
①证明,并求出在(1)条件下的值;
②连接,求周长的最小值;
③如图2,交于点H,点G是的中点,当时,请判断与的数量关系,并说明理由.
【答案】
(1)解:如图9-1,在矩形中,,
即,
∴.
∵点P是的中点,
∴.
∴.
(2)①证明:如图9-2,在矩形中,,
∴.
由折叠可知,
∴.
∴.
在矩形中,,
∵点P是的中点,
∴.
由折叠可知,.
设,则.
∴.
在中,由勾股定理得,
∴,
∴,
即.
②解:如图9-3,由折叠可知,.
∴.
由两点之间线段最短可知,
当点恰好位于对角线上时,最小.
连接,在中,,
∴,
∴,
∴.
③解:与的数量关系是.
理由是:如图9-4,由折叠可知.
过点作,交于点M,
∵,
∴,
∴.
∴,
∴点H是中点.
∵,即,
∴.
∵,
∴.
∴.
∴.
∵点G为中点,点H是中点,
∴.
∴.
∴.
∴.
29.(2022福建)已知,AB=AC,AB>BC.
(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若,求∠ADB的度数.
【答案】
(1)∵,
∴AC=DC,
∵AB=AC,
∴∠ABC=∠ACB,AB=DC,
∵CB平分∠ACD,
∴,
∴,
∴,
∴四边形ABDC是平行四边形,
又∵AB=AC,
∴四边形ABDC是菱形;
(2)结论:.
证明:∵,
∴,
∵AB=AC,
∴,
∴,
∵,
∴,
∵,
∴,
∴;
(3)在AD上取一点M,使得AM=CB,连接BM,
∵AB=CD,,
∴,
∴BM=BD,,
∴,
∵,
∴,
设,,则,
∵CA=CD,
∴,
∴,
∴,
∴,
∵,
∴,
∴,即∠ADB=30°.
30.(2022毕节)如图1,在四边形中,和相交于点O,.
(1)求证:四边形是平行四边形;
(2)如图2,E,F,G分别是的中点,连接,若,求的周长.
【答案】
(1)证明:∵,
∴BC∥AD,
在△AOD和△COB中:,
∴△AOD≌△COB(ASA),
∴BC=AD,
∴四边形ABCD为平行四边形.
(2)解:∵点E、F分别为BO和CO的中点,
∴EF是△OBC的中位线,
∴;
∵ABCD为平行四边形,
∴BD=2BO,
又已知BD=2BA,
∴BO=BA=CD=OD,
∴△DOF与△BOA均为等腰三角形,
又F为OC的中点,连接DF,
∴DF⊥OC,
∴∠AFD=90°,
又G为AD的中点,
由直角三角形斜边上的中线等于斜边的一半可知:;
过B点作BH⊥AO于H,连接HG,如上图所示:
由等腰三角形的“三线合一”可知:AH=HO=AO=AC=4,
∴HC=HO+OC=4+8=12,
在Rt△BHC中,由勾股定理可知,
∵H为AO中点,G为AD中点,
∴HG为△AOD的中位线,
∴HG∥BD,即HG∥BE,
且,
∴四边形BHGE为平行四边形,
∴GE=BH=9,
∴.
31.(2022安徽)已知四边形ABCD中,BC=CD.连接BD,过点C作BD的垂线交AB于点E,连接DE.
(1)如图1,若,求证:四边形BCDE是菱形;
(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.
(ⅰ)求∠CED的大小;
(ⅱ)若AF=AE,求证:BE=CF.
【答案】
(1)证明:∵DC=BC,CE⊥BD,
∴DO=BO,
∵,
∴,,
∴(AAS),
∴,
∴四边形BCDE为平行四边形,
∵CE⊥BD,
∴四边形BCDE为菱形.
(2)
(ⅰ)根据解析(1)可知,BO=DO,
∴CE垂直平分BD,
∴BE=DE,
∵BO=DO,
∴∠BEO=∠DEO,
∵DE垂直平分AC,
∴AE=CE,
∵EG⊥AC,
∴∠AEG=∠DEO,
∴∠AEG=∠DEO=∠BEO,
∵∠AEG+∠DEO+∠BEO=180°,
∴.
(ⅱ)连接EF,
∵EG⊥AC,
∴,
∴,
∵
∵AE=AF,
∴,
∴,
,
∴,
∵,
∴,
∴,
∴,
∴,
,
∴,
,
,
,
∴,
,
∴(AAS),
.
32.(2022黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:
如图,和都是等边三角形,点在上.
求证:以、、为边的三角形是钝角三角形.
(1)【探究发现】小明通过探究发现:连接,根据已知条件,可以证明,,从而得出为钝角三角形,故以、、为边的三角形是钝角三角形.
请你根据小明的思路,写出完整的证明过程.
(2)【拓展迁移】如图,四边形和四边形都是正方形,点在上.
①试猜想:以、、为边的三角形的形状,并说明理由.
②若,试求出正方形的面积.
【答案】
(1)证明:∵△ABC与△EBD均为等边三角形,
∴BE=BD,AB=CB,∠EBD=∠ABC=60°,
∴∠EBA+∠ABD=∠ABD+∠DBC,
∴∠EBA=∠DBC,
在△EBA和△DBC中,
,
∴△EBA≌△DBC(SAS),
∴∠AEB=∠CDB=60°,AE=CD,
∴∠ADC=∠ADB+∠BDC=120°,
∴△ADC为钝角三角形,
∴以、、为边的三角形是钝角三角形.
(2)证明:①以、、为边的三角形是直角三角形.
连结CG,
∵四边形和四边形都是正方形,
∴∠EBG=∠ABC,EB=GB,AB=CB,
∵EG为正方形的对角线,
∴∠BEA=∠BGE=45°,
∴∠EBA+∠ABG=∠ABG+∠GBC=90°,
∴∠EBA=∠GBC,
在△EBA和△GBC中,
,
∴△EBA≌△GBC(SAS),
∴AE=CG,∠BEA=∠BGC=45°,
∴∠AGC=∠AGB+∠BGC=45°+45°=90°,
∴△AGC为直角三角形,
∴以、、为边的三角形是直角三角形;
②连结BD,
∵△AGC为直角三角形,,
∴AC=,
∴四边形ABCD正方形,
∴AC=BD=,
∴S四边形ABCD=.
33.(2022黔东南)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:
如图,和都是等边三角形,点在上.
求证:以、、为边的三角形是钝角三角形.
(1)【探究发现】小明通过探究发现:连接,根据已知条件,可以证明,,从而得出为钝角三角形,故以、、为边的三角形是钝角三角形.
请你根据小明的思路,写出完整的证明过程.
(2)【拓展迁移】如图,四边形和四边形都是正方形,点在上.
①试猜想:以、、为边的三角形的形状,并说明理由.
②若,试求出正方形的面积.
【答案】
(1)证明:∵△ABC与△EBD均为等边三角形,
∴BE=BD,AB=CB,∠EBD=∠ABC=60°,
∴∠EBA+∠ABD=∠ABD+∠DBC,
∴∠EBA=∠DBC,
在△EBA和△DBC中,
,
∴△EBA≌△DBC(SAS),
∴∠AEB=∠CDB=60°,AE=CD,
∴∠ADC=∠ADB+∠BDC=120°,
∴△ADC为钝角三角形,
∴以、、为边的三角形是钝角三角形.
(2)证明:①以、、为边的三角形是直角三角形.
连结CG,
∵四边形和四边形都是正方形,
∴∠EBG=∠ABC,EB=GB,AB=CB,
∵EG为正方形的对角线,
∴∠BEA=∠BGE=45°,
∴∠EBA+∠ABG=∠ABG+∠GBC=90°,
∴∠EBA=∠GBC,
在△EBA和△GBC中,
,
∴△EBA≌△GBC(SAS),
∴AE=CG,∠BEA=∠BGC=45°,
∴∠AGC=∠AGB+∠BGC=45°+45°=90°,
∴△AGC为直角三角形,
∴以、、为边的三角形是直角三角形;
②连结BD,
∵△AGC为直角三角形,,
∴AC=,
∴四边形ABCD正方形,
∴AC=BD=,
∴S四边形ABCD=.
相关试卷
这是一份2023年全国各地中考数学真题分类汇编之多边形与平行四边形(含解析),共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2021年中考数学真题复习汇编:专题19多边形与平行四边形(45题)(第02期)(含解析),共56页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年中考数学真题分项汇编专题13 特殊的平行四边形(含解析),共68页。